2,063 research outputs found

    Positivity of Quasilocal Mass

    Full text link
    Motivated by the important work of Brown adn York on quasilocal energy, we propose definitions of quasilocal energy and momentum surface energy of a spacelike 2-surface with positive intrinsic curvature in a spacetime. We show that the quasilocal energy of the boundary of a compact spacelike hypersurface which satisfies the local energy condition is strictly positive unless the spacetime is flat along the spacelike hypersurface.Comment: 4 pages; final published versio

    Label Transfer from APOGEE to LAMOST: Precise Stellar Parameters for 450,000 LAMOST Giants

    Get PDF
    In this era of large-scale stellar spectroscopic surveys, measurements of stellar attributes ("labels," i.e. parameters and abundances) must be made precise and consistent across surveys. Here, we demonstrate that this can be achieved by a data-driven approach to spectral modeling. With The Cannon, we transfer information from the APOGEE survey to determine precise Teff, log g, [Fe/H], and [α\alpha/M] from the spectra of 450,000 LAMOST giants. The Cannon fits a predictive model for LAMOST spectra using 9952 stars observed in common between the two surveys, taking five labels from APOGEE DR12 as ground truth: Teff, log g, [Fe/H], [\alpha/M], and K-band extinction AkA_k. The model is then used to infer Teff, log g, [Fe/H], and [α\alpha/M] for 454,180 giants, 20% of the LAMOST DR2 stellar sample. These are the first [α\alpha/M] values for the full set of LAMOST giants, and the largest catalog of [α\alpha/M] for giant stars to date. Furthermore, these labels are by construction on the APOGEE label scale; for spectra with S/N > 50, cross-validation of the model yields typical uncertainties of 70K in Teff, 0.1 in log g, 0.1 in [Fe/H], and 0.04 in [α\alpha/M], values comparable to the broadly stated, conservative APOGEE DR12 uncertainties. Thus, by using "label transfer" to tie low-resolution (LAMOST R \sim 1800) spectra to the label scale of a much higher-resolution (APOGEE R \sim 22,500) survey, we substantially reduce the inconsistencies between labels measured by the individual survey pipelines. This demonstrates that label transfer with The Cannon can successfully bring different surveys onto the same physical scale.Comment: 27 pages, 14 figures. Accepted by ApJ on 16 Dec 2016, implementing suggestions from the referee reports. Associated code available at https://github.com/annayqho/TheCanno

    Masses and Ages for 230,000 LAMOST Giants, via Their Carbon and Nitrogen Abundances

    Get PDF
    We measure carbon and nitrogen abundances to a precision of ≾0.1 dex for 450,000 giant stars from their low-resolution (R ~ 1800) LAMOST DR2 survey spectra. We use these [C/M] and [N/M] measurements, together with empirical relations based on the APOKASC sample, to infer stellar masses and implied ages for 230,000 of these objects to 0.08 dex and 0.2 dex respectively. We use The Cannon, a data-driven approach to spectral modeling, to construct a predictive model for LAMOST spectra. Our reference set comprises 8125 stars observed in common between the APOGEE and LAMOST surveys, taking seven APOGEE DR12 labels (parameters) as ground truth: T_(eff), log g, [M/H], [α/M], [C/M], [N/M], and A_k. We add seven colors to the Cannon model, based on the g, r, i, J, H, K, W1, W2 magnitudes from APASS, 2MASS, and WISE, which improves our constraints on T_(eff) and log g by up to 20% and on A_k by up to 70%. Cross-validation of the model demonstrates that, for high-S/N objects, our inferred labels agree with the APOGEE values to within 50 K in temperature, 0.04 mag in A_k, and <0.1 dex in log g, [M/H], [C/M], [N/M], and [α/M]. We apply the model to 450,000 giants in LAMOST DR2 that have not been observed by APOGEE. This demonstrates that precise individual abundances can be measured from low-resolution spectra and represents the largest catalog to date of homogeneous stellar [C/M], [N/M], masses, and ages. As a result, we greatly increase the number and sky coverage of stars with mass and age estimates

    Initial Characterization of the FlgE Hook High Molecular Weight Complex of Borrelia burgdorferi

    Get PDF
    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility

    Gulf Stream Transport and Mixing Processes via Coherent Structure Dynamics

    Get PDF
    The Gulf Stream has been characterized as either a barrier or blender to fluid transfer, a duality relevant to gyre‐scale climate adjustment. However, previous characterization depended on relatively sparse, Lagrangian in situ observations. The finite‐time Lyapunov exponent (FTLE) is calculated from satellite altimetry to identify Lagrangian coherent structures (LCS) in the Gulf Stream region. These LCS provide dense sampling of flow and capture distinct regions associated with mixing. Independent observations of ocean color contain similar flow‐dependent structures, providing verification of the method and highlighting transport and mixing processes that influence sea surface temperature and chlorophyll, among other water properties. Diagnosed LCS support the existing Bower kinematic model of the Gulf Stream, but also highlight novel behavior of comparable importance. These include vortex pinch‐off and formation of spiral eddies, clearly identified by LCS and which may be explained by considering changes to flow topology and the dynamics of shear‐flow instability at both small and large Rossby number. Such processes, seen though LCS, may further enable validation of climate models. The spatial distribution of these intermittent processes is characterized in terms of the criticality of jet dynamics with respect to Rossby wave propagation, and whether the jet is in an unstable or wave‐maker regime. The generation and connectivity of hyperbolic trajectories in the flow appears to play an important role in governing large‐scale transport and mixing across the Gulf Stream

    A categorification of Morelli's theorem

    Full text link
    We prove a theorem relating torus-equivariant coherent sheaves on toric varieties to polyhedrally-constructible sheaves on a vector space. At the level of K-theory, the theorem recovers Morelli's description of the K-theory of a smooth projective toric variety. Specifically, let XX be a proper toric variety of dimension nn and let M_\bR = \mathrm{Lie}(T_\bR^\vee)\cong \bR^n be the Lie algebra of the compact dual (real) torus T_\bR^\vee\cong U(1)^n. Then there is a corresponding conical Lagrangian \Lambda \subset T^*M_\bR and an equivalence of triangulated dg categories \Perf_T(X) \cong \Sh_{cc}(M_\bR;\Lambda), where \Perf_T(X) is the triangulated dg category of perfect complexes of torus-equivariant coherent sheaves on XX and \Sh_{cc}(M_\bR;\Lambda) is the triangulated dg category of complex of sheaves on M_\bR with compactly supported, constructible cohomology whose singular support lies in Λ\Lambda. This equivalence is monoidal---it intertwines the tensor product of coherent sheaves on XX with the convolution product of constructible sheaves on M_\bR.Comment: 20 pages. This is a strengthened version of the first half of arXiv:0811.1228v3, with new results; the second half becomes arXiv:0811.1228v

    The Shaping of T Cell Receptor Recognition by Self-Tolerance

    Get PDF
    SummaryDuring selection of the T cell repertoire, the immune system navigates the subtle distinction between self-restriction and self-tolerance, yet how this is achieved is unclear. Here we describe how self-tolerance toward a trans-HLA (human leukocyte antigen) allotype shapes T cell receptor (TCR) recognition of an Epstein-Barr virus (EBV) determinant (FLRGRAYGL). The recognition of HLA-B8-FLRGRAYGL by two archetypal TCRs was compared. One was a publicly selected TCR, LC13, that is alloreactive with HLA-B44; the other, CF34, lacks HLA-B44 reactivity because it arises when HLA-B44 is coinherited in trans with HLA-B8. Whereas the alloreactive LC13 TCR docked at the C terminus of HLA-B8-FLRGRAYGL, the CF34 TCR docked at the N terminus of HLA-B8-FLRGRAYGL, which coincided with a polymorphic region between HLA-B8 and HLA-B44. The markedly contrasting footprints of the LC13 and CF34 TCRs provided a portrait of how self-tolerance shapes the specificity of TCRs selected into the immune repertoire

    Masses and Ages for 230,000 LAMOST Giants, via Their Carbon and Nitrogen Abundances

    Get PDF
    We measure carbon and nitrogen abundances to a precision of ≾0.1 dex for 450,000 giant stars from their low-resolution (R ~ 1800) LAMOST DR2 survey spectra. We use these [C/M] and [N/M] measurements, together with empirical relations based on the APOKASC sample, to infer stellar masses and implied ages for 230,000 of these objects to 0.08 dex and 0.2 dex respectively. We use The Cannon, a data-driven approach to spectral modeling, to construct a predictive model for LAMOST spectra. Our reference set comprises 8125 stars observed in common between the APOGEE and LAMOST surveys, taking seven APOGEE DR12 labels (parameters) as ground truth: T_(eff), log g, [M/H], [α/M], [C/M], [N/M], and A_k. We add seven colors to the Cannon model, based on the g, r, i, J, H, K, W1, W2 magnitudes from APASS, 2MASS, and WISE, which improves our constraints on T_(eff) and log g by up to 20% and on A_k by up to 70%. Cross-validation of the model demonstrates that, for high-S/N objects, our inferred labels agree with the APOGEE values to within 50 K in temperature, 0.04 mag in A_k, and <0.1 dex in log g, [M/H], [C/M], [N/M], and [α/M]. We apply the model to 450,000 giants in LAMOST DR2 that have not been observed by APOGEE. This demonstrates that precise individual abundances can be measured from low-resolution spectra and represents the largest catalog to date of homogeneous stellar [C/M], [N/M], masses, and ages. As a result, we greatly increase the number and sky coverage of stars with mass and age estimates

    24(S)-Saringosterol Prevents Cognitive Decline in a Mouse Model for Alzheimer's Disease

    Get PDF
    We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXR beta-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-beta (A beta) deposition in an Alzheimer's disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1 Delta E9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1 Delta E9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1 Delta E9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, A beta and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1 Delta E9 mice without affecting the A beta plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1 Delta E9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1 Delta E9 mice independent of effects on A beta load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline
    corecore