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ABSTRACT

We measure carbon and nitrogen abundances to . 0.1 dex for 450, 000 giant

stars from their low-resolution (R ∼ 1800) LAMOST DR2 survey spectra. We use

these [C/M] and [N/M] measurements, together with empirical relations based

on the APOKASC sample, to infer stellar masses and implied ages for 230,000

of these objects to 0.08 dex and 0.2 dex respectively. We use The Cannon, a

data-driven approach to spectral modeling, to construct a predictive model for

LAMOST spectra. Our reference set comprises 8125 stars observed in common

between the APOGEE and LAMOST surveys, taking seven APOGEE DR12

labels (parameters) as ground truth: Teff , log g, [M/H], [α/M], [C/M], [N/M], and

Ak. We add seven colors to the Cannon model, based on the g, r, i, J, H, K, W1,

W2 magnitudes from APASS, 2MASS & WISE, which improves our constraints

on Teff and log g by up to 20% and on Ak by up to 70%. Cross-validation of

the model demonstrates that, for high-S/N objects, our inferred labels agree

with the APOGEE values to within 50 K in temperature, 0.04 magnitudes in Ak,

and < 0.1 dex in log g, [M/H], [C/M], [N/M], and [α/M]. We apply the model

to 450,000 giants in LAMOST DR2 that have not been observed by APOGEE.
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This demonstrates that precise individual abundances can be measured from low-

resolution spectra, and represents the largest catalog of [C/M], [N/M], masses

and ages to date. As as result, we greatly increase the number and sky coverage

of stars with mass and age estimates.

Subject headings: methods: data analysis — methods: statistical — stars: abun-

dances — stars: fundamental parameters — surveys — techniques: spectroscopic

1. Introduction

An empirical description of the Milky Way’s present structure and formation history re-

quires accurate and consistent age estimates for large samples of stars distributed throughout

the galaxy. Although we have recently entered an era of extensive spatial, kinematic, and

chemical information beyond the solar neighborhood, comparably extensive age constraints

remain elusive.

Stellar age is a property that must be inferred from observations with the help of stellar

evolution models; generally, it cannot be measured “directly”. Therefore, results are inher-

ently limited by the applicability and accuracy of the model used (see Soderblom (2010)

for a comprehensive review.) As stellar ages are difficult to measure directly, abundances

such as [Fe/H] and [α/Fe] are commonly used as an age-dating proxy (e.g. via making

maps of mono-age populations; see Rix & Bovy (2013) and Bovy et al. (2015)) because the

determination of photospheric abundances from spectra is more straightforward.

Unfortunately for Milky Way studies, the population of stars that is most readily ob-

servable throughout the galaxy — red giant stars — is also the one for which it is particularly

challenging to estimate ages. The standard technique of isochrone fitting is impractical in

this regime, because there is too much uncertainty both in stellar parameter measurements

and in the model isochrones. In other words, stars with very different ages can have very

similar atmospheric parameters and luminosities (Rix & Bovy 2013; Soderblom 2010).

Instead, the key to age-dating red giant stars is mass. Because the red giant phase is

so short, the age of a star is essentially its main sequence lifetime, which is set by the star’s

mass and metallicity (Soderblom 2010). Given mass and metallicity, one can estimate age

using isochrones, e.g. by interpolating between them.

Recently, asteroseismology has made it possible to measure masses for giants out to large

distances. The Kepler mission (Koch et al. 2010; Gilliland et al. 2011) has conducted long-

cadence photometry for over ten thousand giants along a pencil-beam through the Galaxy
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(Stello et al. 2013). From detailed light curves one can measure two characteristic variability

frequencies that directly probe the (age-dependent) structure of the stellar interior: νmax is

the frequency corresponding to the maximum oscillation power, and ∆ ν is the frequency

spacing between two consecutive modes of the same spherical degree. This approach is espe-

cially effective for giants because they have higher densities and thus a larger sound speed,

which makes these (acoustic) oscillations more pronounced (Soderblom 2010). Together with

a measurement of the star’s Teff , and the solar values νmax,� and ∆ ν�, the mass of the star

can be estimated using seismic scaling relations. Note that these scaling relations are based

on Sun-like stars, and may not be suitable for metal-poor stars (Epstein et al. 2014).

Furthermore, the population of stars with asteroseismic measurements is spatially lim-

ited. Ness et al. (2016) and Martig et al. (2016) greatly expanded the spatial coverage of

giants with age estimates by determining masses spectroscopically: they showed that the

masses (and implied ages) of post dredge-up giants can be measured from high-resolution

infrared (APOGEE, R≈ 22,500) spectra, and determined a model of mass and age as a

function of Teff , log g, [M/H], [C/M], and [N/M] values (see Tables A2 and A3 in Martig et

al. (2016)). Their work increased the sample of giant stars with known ages to 70,000, the

largest (and most spatially extended) sample of stellar ages to date.

In this work, we set out to extend this spectroscopic mass & age work to LAMOST,

the largest ongoing stellar spectroscopic survey. LAMOST represents a large expansion

over APOGEE in area coverage (LAMOST stars are measured away from the disk, unlike

APOGEE), sample size, and parameter range (in particular, [Fe/H]). Ho et al. (2016) have

shown that basic parameters (Teff , log g, [Fe/H], and [α/M]) consistent with APOGEE values

can be determined directly from LAMOST spectra, using The Cannon.

The Cannon (Ness et al. 2015) is a data-driven method for measuring stellar “labels” (a

term that refers collectively to all attributes of a star, e.g. physical parameters and element

abundances) from stellar spectra in the context of large spectroscopic surveys. It has shown

promise for bringing qualitatively different stellar surveys onto a consistent physical scale,

and for transferring label systems from one survey to another. In Ho et al. (2016), for

example, The Cannon was used to transfer labels from a high-resolution, high-S/N survey

(APOGEE) to a low-resolution, modest-S/N survey (LAMOST), enabling the measurement

of the first-ever [α/M] values from LAMOST spectra, and the largest and most spatially-

extended sample of [α/M] values to date (∼450,000 giants). Of course, this data-driven

approach can only be applied to a subset of the LAMOST dataset, restricted by the overlap

in label space with APOGEE: because the set of objects in common between APOGEE and

LAMOST is entirely giants, our model is limited in its applicability to giants, which is only

20% of the LAMOST DR2 dataset.
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The Cannon operates in two s.png: a training step and a test step. For a complete

description of the methodology, see Ness et al. (2015); we summarize briefly here. In the

training step, The Cannon uses a reference set of objects observed in common between

the surveys of interest to construct a predictive model of spectra independently at each

wavelength. For example, for a set of objects measured in common between Survey A and

Survey B, The Cannon might fit a model that predicts every pixel in a Survey A spectrum

given Survey B labels. In the test step, this model can be used to infer new labels directly

from Survey A spectra that are by construction on the Survey B label scale. The Cannon

uses no explicit physical stellar models, is very fast, and achieves comparable accuracy to

existing survey pipelines using significantly lower SNR spectra; it requires only a set of

objects observed in common between the surveys.

Taken together, the work in Martig et al. (2016), Ness et al. (2016), and Ho et al. (2016)

raises the prospect that ages could be determined for a large sample of LAMOST giants.

In theory, it seems plausible that mass (and implied age) information could be encoded in

optical spectra. After all, in the near-IR, mass is encoded in CN and CO molecular regions;

as [C/N] and [C/H] features are prominent in the blue parts (∼ 4100Å) of giant spectra (e.g.

Martell et al. (2008)) it seems plausible that this information could be encoded in LAMOST

spectra too. Recent theoretical work by Salaris et al. (2015) and Martig et al. (2016) lends

physical justification to why these features should be indicative of mass: during a star’s

main sequence lifetime, the CNO cycle in its core determines the final relative abundances of

carbon and nitrogen. After arriving on the giant branch, the material in the core is dredged

up to the surface via convective mixing. The depth of the convective envelope, and the [C/N]

ratio in the core, is determined by the mass of the star. Thus, in giants that have undergone

dredge-up once (that is, they have not undergone additional convective mixing) the [C/N]

ratio observed in the photosphere is (together with metallicity) highly predictive of mass.

However, [C/M] and [N/M] have not previously been measured from low-resolution

resolution (R . 5000) spectra. In this work, we extend the APOGEE-LAMOST label

transfer work of Ho et al. (2016) by two additional labels ([C/M] and [N/M]) to learn about

the information content of LAMOST spectra. We use the theoretical relations in Martig

et al. (2016) to determine masses and ages for as many giant stars as possible, restricted

primarily by the parameter regime in which the relations are applicable. This will enable us

to measure the largest sample of stellar ages to date.



– 5 –

2. Label Transfer Using The Cannon

Our procedure for transferring labels from APOGEE to LAMOST using The Cannon

closely resembles the work of Ho et al. (2016). Here, too, the data consist of spectra from

LAMOST, which we again normalize in a consistent way using a running Gaussian, and

labels from APOGEE DR12. As before, the spectral model is quadratic in the labels. There

are, however, important differences in (and new components to) our modeling: in the labels

that we use, in the reference objects that we use to train the model, in spectral regions that

we mask out, and in the incorporation of photometry.

Here, our model is quadratic in seven labels instead of the original five labels: we use Teff ,

log g, [M/H], [C/M], [N/M], [α/M], and K-band extinction Ak. Because we will eventually

use the relations in Martig et al. (2016) to translate our carbon and nitrogen abundances

into age estimates, our labels need to be on the same scale as those that were used to fit for

the relations. Thus, whereas we used the calibrated DR12 parameters in Ho et al. (2016)

(those in the PARAM array) in this case we use the raw, uncalibrated values from the FPARAM

array.

Furthermore, we do not use the full reference set of 9956 objects from Ho et al. (2016),

because some of these have unreliable [C/M] and [N/M] reference labels. Following Martig

et al. (2016), we excise objects that have both Teff > 4550 and −1 < [M/H] < −0.5 (743

objects) in order to eliminate objects with only an upper limit measurement on [C/M] and

a lower limit on [N/M]. In addition, Martig et al. (2016) found that the minimum [C/M]

possible to measure is on the level of -0.4 to -0.5 dex, so we also exclude objects with

[C/M] < −0.4 (40 objects). This left us with 9173 out of the original 9956.

In Ho et al. (2016), we fit an independent spectral model at every spectral pixel. How-

ever, there are features in LAMOST spectra that arise from effects in a different velocity

system from that of the star: for example, Diffuse Interstellar Bands (DIBs) and the Na I

doublet are interstellar absorption features originating from intervening material. We no-

ticed by examining the leading coefficients of an initial Cannon model (see Figure 3) that

The Cannon was “learning” to use these features to predict labels intrinsic to the star, par-

ticularly [α/M], and that this introduced radial velocity-dependent systematic errors into the

label estimates1. The leading coefficients of an initial The Cannon model also indicated that

the imperfectly corrected telluric bands, originating in the Earth’s atmosphere, left small,

but significant, velocity-dependent effects in the rest-frame spectra of the stars.

1As α-enhanced stars have a different line-of-sight velocity distribution, velocity and [α/M] may well be

correlated
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To prevent The Cannon from using these features spuriously, we masked them out by

setting the inverse variances corresponding to these pixels to be zero. To be conservative,

roughly half of each spectrum was masked, but because the most important features for our

labels of interest were preserved, this still improved our label estimates.

Masking out the interstellar absorption features took out most of the spectral informa-

tion on Ak, which originated in the DIB strength. But of course, many-band photometry of

a star encodes a combination of its effective temperature and its reddening. We found that

incorporating photometry not only enabled us to accurately and precisely predict Ak for

our reference objects, but also to improve the precision of our estimate of Teff , particularly

for lower-S/N spectra. It also improved the precision of our estimate of log g, presumably

because measurements of Teff and log g are highly covariant for spectra of this resolution

due to blending (see e.g. Ting et al. 2016b; submitted to ApJ). The scatter in Ak decreased

by 70% in the lowest-S/N spectra, by 50% in spectra with 50 < S/N < 100, and by 25% in

spectra with S/N > 100. For low-S/N spectra, the scatter in Teff and log g improved by up

to 20%, although for S/N& 50 the difference was negligible.

We incorporated photometry as follows: we took magnitudes (and the associated uncer-

tainties) from eight bands, taken from APASS DR9 (Henden & Munari 2014; Henden et al.

2016), 2MASS (Cutri et al. 2003; Skrutskie et al. 2006) and WISE (Wright et al. 2010): g,

r, i, J, H, K, W1 (3.4µm), W2 (4.6µm). From these, we constructed seven colors: g-r, r-i,

i-J, J-H, H-K, K-W1, and W2-W1. For each reference object, we added its seven colors as

“pixels” to its spectrum: the color as the “flux” and the uncertainty as the “error bar.” Using

colors restricted us to the set of reference objects with APASS, 2MASS & WISE magnitudes:

8472 of the 9173.

We emphasize that The Cannon builds a model of spectra but is agnostic to whether

the value of a “spectral pixel” is a true flux value or simply another observed property of

the star that is sensitive to the labels of interest. Note, however, that our quadratic model is

probably not sufficiently complex for the photometric data; we would expect improvements

for a model that is more complex at the photometric pixels relative to the spectroscopic

pixels.

2.1. Results from Cross-Validation

As in Ho et al. (2016), we evaluate the accuracy and precision of our model using a

“leave-1
8
-out” cross-validation test. We split the 8472 reference objects into eight groups, by

assigning each one a random integer between 0 and 7. We leave out each group in turn, and
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train a model on the remaining seven groups. We then apply that model to infer new labels

for the group that was left out. We use the results of the cross-validation to determine which

objects are appropriate reference objects for training the model: we excise objects whose

difference from the training value is greater than four times the scatter in that label, leaving

8125 objects. We train the model on these 8125 objects and re-run the cross-validation. We

also use the model to infer labels for the 347 objects excised from the training, in order to

properly account for all of the objects in the following error analysis.

At the end of this process, each of the 8472 objects has a new set of labels determined

by The Cannon, from a model that was not trained using that object. Figure 1 shows the

comparison of these Cannon-inferred “test” labels with the reference labels used in training,

for high S/N objects; there is a significant decrease in scatter compared to the corresponding

figure in Ho et al. (2016) (Fig. 6). For objects with S/N > 100, the labels are consistent

with the APOGEE training values to within 53 K in Teff , 0.11 dex in log g, 0.05 dex in

[M/H], 0.06 dex in [C/M], 0.09 dex in [N/M], 0.03 dex in [α/M], and 0.04 mag in Ak. These

are comparable to, or within, the stated ASPCAP uncertainties (Holtzman et al. 2015).

Figure 2 shows the scatter in different bins of S/N (where S/N is the median value of for-

mal S/N across all pixels in the spectrum) in all of the labels except for Ak (which is primarily

determined from the additional photometric pixels, not taken into account in determining

the S/N). By construction, as a result of this data-driven label transfer, there is significant

improvement in agreement with the APOGEE values over those from the LAMOST pipeline.

2.2. Astrophysical Verification of the Spectral Model

A key strength of The Cannon is the physical interpretability of the spectral model. An

independent model is fit at every pixel of the spectrum, so each pixel has a set of model

coefficients as well as a model scatter term. The leading (linear) coefficient in each label can

be thought of as a proxy for how sensitive a particular spectral pixel is to that particular

label; thus, each label has a wavelength-dependent indicator of which spectral regions are

most informative. Each pixel also has a model scatter term; this is the intrinsic variance

in the model at that pixel, as distinct from the observational variance. In other words, it

is the expected deviation from the model at that particular pixel, in the limit of a perfect

measurement.

These are shown in Figure 3, in the part of the spectrum found by The Cannon to be

most predictive of labels (the blue end, ∼ 4000 − 5800 Å), together with the scatter in the

model. These linear coefficients are the first derivative of the model at a set of fiducial stellar
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Fig. 1.— Results from cross-validation of The Cannon’s label transfer from APOGEE to

LAMOST, for spectra with S/N> 100. Shown are the APOGEE labels used in training the

model, compared to the labels inferred by The Cannon in the test step. The improvement in

precision over the results in Ho et al. (2016) reflects changes we made to the model described

in 2. The low bias and scatter in [C/M] and [N/M] demonstrates that these abundances can

in fact be measured from low resolution LAMOST spectra.
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Fig. 2.— The S/N-dependence of the scatter between APOGEE DR12 labels and the cor-

responding labels measured from LAMOST spectra by The Cannon (purple points) and the

LAMOST pipeline (yellow points), for 8472 objects. By construction, the labels measured

by The Cannon are in closer agreement with the APOGEE values for Teff , log g, and [M/H],

and the model behaves well with decreasing S/N. Note that we are using our own formal

measurement of ∼ S/N, not the reported LAMOST error bar.
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parameters; in this case, we pivot the model around the mean value in each label across the

training set: Teff = 4687 K, log g = 2.83 dex, [M/H] = -0.19 dex, [α/M] = -0.01 dex, [C/M] =

0.10 dex, [N/M] = 0.09 dex, Ak = 0.09 mag. To facilitate comparison, each derivative has been

scaled by the approximate error in the corresponding label: δTeff ∼ 91.5 K, δlog g ∼ 0.11 dex,

δ[M/H] ∼ 0.05 dex, δ[α/M] ∼ 0.05 dex, δ[C/M] ∼ 0.04 dex, δ[N/M] ∼ 0.07 dex (Holtzman et

al. 2015).

The new labels in this work are [C/M] and [N/M], so we should demonstrate that

The Cannon measures these values from physically plausible spectral signatures. Ting et

al. 2016b (submitted to ApJ) quantified how the precision with which various abundances

(including [C/H] and [N/H]) can be measured varies as a function of survey resolution.

They showed that low-resolution (R < 10, 000) spectra, such as those from LAMOST,

have the same theoretically achievable uncertainties per stellar label as medium-resolution

(10, 000 < R < 50, 000) spectra, under the following assumptions: equal exposure time (so

that a low-resolution spectrum has higher S/N per resolution element), an equal number of

detector pixels (so that low-resolution spectra have more extensive wavelength coverage), and

a constant sampling per resolution element. These predictions are based in part on gradient

spectra calculated using Kurucz models (Kurucz 1970, 1993, 2005; Kurucz & Avrett 1981),

which are assumed to be perfect. Of course, this aspect does not pertain to data-driven

models (see the discussion in Ting et al. (2016a)).

To make a direct comparison between the Cannon model and theoretical predictions, we

calculate gradient spectra and compare them to the gradient spectra calculated from Kurucz

models by Ting et al. (2016a). Gradient spectra are a quantification of how much the flux at

a given wavelength changes with changes to a given label: in other words, it characterizes the

sensitivity or information content of each wavelength for a given label. Following Equation

2 in Ting et al. 2016b, gradient spectra are calculated as follows:

∇`fmodel(λ, `i) =
fmodel(λ, `i + ∆`i)− fmodel(λ, `i)

∆`i
(1)

where fmodel(λ, `i) represents a model spectrum across wavelengths λ, generated using a set

of labels `i. A fractional change in a particular label ∆`i results in a fractional change in the

spectrum ∇`fmodel at each wavelength λ. In other words, to study sensitivity of a spectral

region to a particular label, one changes the value in that label and calculates the fractional

change in the flux in that region.

We have two sets of model spectra: one from the Cannon model as described in Section

2, and one from the Kurucz models, in both cases generated using labels for a solar metallicity

K-giant (Teff=4800, log g=3.5). We use each of these models to calculate a gradient spectrum
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Fig. 3.— Leading (linear) coefficients and scatter from the best-fit spectral model, deter-

mined by The Cannon using the 8125 reference objects. The leading coefficients can be

thought of as a proxy for how sensitive each pixel in the spectrum is to each of the labels; to

facilitate comparison, each has been scaled by the approximate error in that label (Holtzman

et al. 2015). The scatter term sλ is the variance intrinsic to the model; it quantifies each

pixel’s expected deviations from the model in the limit of a perfect measurement. We display

the model coefficients and scatter blueward of 5800 Å because this was found by The Cannon

to be the region with the most sensitive features.
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for [C/M] by varying [C/M] by 0.2 dex, and a gradient spectrum for [N/M] by varying [N/M]

by 0.2 dex. For a more direct comparison, we normalize the theoretical gradient spectra the

same way as the LAMOST spectra.

Figure 4 shows the Cannon model gradient spectra overlaid with the Kurucz model

gradient spectra from Ting et al. 2016b, for the CN and CH molecular features in the

wavelength range 4100-4400 Å (see Martell et al. (2008)). The panel on the left shows the

gradient spectra for carbon, and the panel on the right shows the gradient spectra for nitro-

gen. As the theoretical gradient spectra (red) were generated purely from physical models,

and the Cannon gradient spectra (black) represent an entirely data-driven relationship be-

tween these wavelength regions and abundances from APOGEE, the qualitative similarity

between them is gratifying. There are clearly some quantitative differences, but we simply

seek to demonstrate here that the signatures of carbon and nitrogen from the data-driven

Cannon model come from astrophysically sensible wavelength regions, such as the 4215 Å

CN band. Furthermore, the differences between the two panels demonstrates that we are

measuring each element from distinct features, not simply correlations between the two (e.g.

the carbon-sensitive CH (G) band, not present in the nitrogen signature). The fact that

[C/M] and [N/M] share regions of sensitivity does not mean that they are degenerate; they

may be covariant, but can still be independently measured when fit for simultaneously (see

Ting et al. 2016b, submitted).

3. From [C/M] and [N/M] to Mass and Age

To transform [C/M] and [N/M] to mass and age, we use the formulas characterized by

the coefficients in Table A2 and Table A3 of Martig et al. (2016), which are in turn based

on asteroseismic mass measurements for stars with [C/M] and [N/M] measurements. These

relations are only applicable within a certain range of label values, restricting the number

of objects for which we can infer masses and ages via their [C/M] and [N/M]. Although we

infer [C/M] and [N/M] for the full set of 454,180 test objects described in Ho et al. (2016),

we apply the following cuts (following Martig et al. (2016)) which leave 230,901 objects

suitable for applying the formula. This sets the primary restriction on the size of our mass

and age catalog; for example, although the LAMOST data contain a large population of

low-metallicity outer disk stars, we cannot estimate masses and ages for those objects.
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Fig. 4.— Gradient spectra for carbon (left panel) and nitrogen (right panel) calculated using

two different models: theoretical Kurucz models (red line) and the Cannon model (black

line). All model spectra were generated using K-giant (Teff=4750, log g=2.5) and solar

metallicity values, stepping over 0.2 dex in [C/M] and [N/M]. For a better comparison, the

Kurucz gradient spectra were normalized the same way as the LAMOST spectra, as described

in Section 2. The qualitative similarity between the black and red lines demonstrates that

the Cannon measurements of [C/M] and [N/M] are coming from astrophysically sensible

spectral regions, e.g. the 4215 Å CN band. Furthermore, the difference between the left and

right panels demonstrates that [C/M] and [N/M] are being measured independently, not just

via correlations: for example, the nitrogen signature does not include any changes in the G

(CH) band.



−0.8 < [M/H] < 0.25
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The estimated masses and ages have uncertainties that come from the intrinsic scatter

of the relation (Martig et al. 2016) and the individual stellar label uncertainties. To estimate

the latter, we sample from each star’s label pdf 100 times, approximating each distribution

as a Gaussian with a standard deviation equal to the scatter in that label. That scatter is a

function of signal to noise (see Figure 2), so for each object we take the standard deviation

of its Gaussian spread to be the scatter associated with that signal to noise bin. Thus, each

object has a distribution in mass and age. We take the mass and age value to be the median

of that distribution, and estimate the uncertainty using the half-width of the central 68th

percentile.

This procedure does not account for the errors in the training labels nor the scatter in

the Martig et al. (2016) relation. There are, however, additional systematic errors from the

age relation in Martig et al. (2016) that are not taken into account here. Note that these

are all distinct from, an in addition to, the formal error from the Cannon model fit.

We provide a catalog of all our inferred labels, including mass and age; an excerpt is

shown in Table 1. We provide [C/M] and [N/M] for all 454,364 objects, but mass and age

only for the 230,901 of those that fall within the label space of Martig et al. (2016). We also

provide flags indicating whether an object was used as a reference object and whether the

object falls within the label range of Martig et al. (2016). We also provide the formal S/N for

the spectrum of each object and the reduced chi squared of the fit, which is the chi squared

divided by the approximate number of pixels in each spectrum (∼ 1800). Note that the S/N

and the reduced chi squared are both low by roughly a factor of three; see the discussion

in Section 4.1 of Ho et al. (2016). Furthermore, note that the values of Teff , log g, [M/H],

and [α/M] will not be identical to their corresponding values in Ho et al. (2016) for several

reasons: they are on the uncalibrated APOGEE label scale, and there have been various

changes in our procedure (masking 50% of the spectrum, the inclusion of photometry, fitting

for additional labels).
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Table 1: Excerpt from the online table of stellar labels (Teff , log g, [M/H], [C/M], [N/M],

[α/M], Ak, mass, and age) for 454,364 stars, inferred by The Cannon. Column 1 is the

LAMOST ID of the object, Columns 2-3 are the position of the object in RA and Dec,

Columns 4-10 are the labels from The Cannon, Columns 11-12 are the estimated masses and

ages, Columns 13-19 are the formal errors on the Cannon-inferred labels from the covariance

matrix in the model fit, Columns 20-21 are the estimated uncertainties on mass and age,

and Columns 22-23 are the S/N of the spectrum and the reduced χ2 of the model fit. Note

that the reduced χ2 values are low by a factor of ∼ 3 because the random component of the

errors in the LAMOST spectra is overestimated.
LAMOST ID RA Dec Teff log g [M/H] [C/M] [N/M] [α/M] Ak Mass log(Age)

(deg) (deg) (K) (dex) (dex) (dex) (dex) (dex) mag (M�) dex

spec-55859-F5902 sp01-034 331.92 -1.78 4794 3.22 -0.507 0.0645 -0.0242 0.228 0.0540 0.78 1.0

spec-55859-F5902 sp03-209 331.14 0.853 4620 2.88 -0.347 0.0984 0.107 0.220 0.0131 1.0 0.85

spec-55859-F5902 sp06-160 334.27 -0.159 4240 2.23 -0.293 0.0734 0.102 0.208 0.148 1.3 0.66

spec-55859-F5902 sp08-146 333.41 -0.397 4895 3.29 -0.337 -0.0221 -0.0243 0.212 0.0293 1.2 0.65

Table 2: Continued from Table 1
LAMOST ID σ(Teff) σ(log g) σ([M/H]) σ([C/M]) σ([N/M]) σ([α/M]) σ(Ak) σ(Mass) σ(log(Age))

(K) (dex) (dex) (dex) (dex) (dex) (mag) (M�) (dex)

spec-55859-F5902 sp01-034 3290 0.010 0.0027 0.0043 0.0089 0.00066 0.00036 0.33 0.34

spec-55859-F5902 sp03-209 73.8 0.00031 8.0e-5 0.00012 0.0003 2.67e-5 5.2e-5 0.097 0.12

spec-55859-F5902 sp06-160 65.0 0.0004 0.0001 7.9e-5 0.00014 4.93e-5 7.0e-5 0.43 0.34

spec-55859-F5902 sp08-146 5150 0.016 0.0047 0.0042 0.0058 0.0015 0.00041 0.47 0.45

Table 3: Continued from Table 2
LAMOST ID SNR Red.

χ2

spec-55859-F5902 sp01-034 33.7 0.44

spec-55859-F5902 sp03-209 169 1.7

spec-55859-F5902 sp06-160 130 1.2

spec-55859-F5902 sp08-146 19.9 0.51

3.1. Astrophysical Verification of Inferred Ages

We now investigate whether our inferred age values seem astrophysically plausible. Fig-

ure 5 shows the ([M/H], [α/M]) plane color-coded by age for∼ 40, 000 objects with S/N > 80.

Shown is the mean age in each bin, weighted by the estimated uncertainty in the age measure-

ment, for bins with a minimum of 20 objects. We see an astrophysically sensible age gradient

with changing abundances, from the young, low-[α/M] sequence to the old, high-[α/M] se-

quence. This is qualitatively very similar to the gradient seen from small high-resolution
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datasets of main sequence turn-off stars in the solar neighborhood (e.g. Haywood et al.

(2013)).

Furthermore, as Figure 6 shows, our masses and ages (for the reference objects) are

in remarkable agreement with the masses and ages from the Ness et al. (2016) catalog,

determined via a rather different approach. In that approach (x axis) masses were measured

directly from APOGEE spectra (R ∼ 22, 500) and ages were estimated via isochrone fitting.

In our approach (y axis) we measured [C/M] and [N/M] directly from LAMOST spectra

(R ∼ 1, 800) and used the relations in Martig et al. (2016) to estimate ages. This agreement

supports the plausibility of our estimates.

Finally, Figure 7 shows the enhanced spatial distribution of our sample over that from

70,000 stars in APOGEE (Ness et al. 2016). As expected, younger stars are concentrated

towards the disk mid-plane, and older stars extend to a larger scale height away from the

disk and into the bulge and halo.

Fig. 5.— Cannon age estimates for LAMOST giants: the [α/M]-[M/H] plane color-coded by

the mean age (weighted by the estimated age uncertainties) in each bin. We excised objects

with S/N< 80 (leaving 42420 objects) and only show bins with > 20 objects. The gradient

from young α-poor to old α-rich stars is astrophysically very plausible.
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Fig. 6.— For the 6215 objects in common with the APOGEE mass and age catalog in Ness

et al. (2016): comparison between our estimates (inferred via [C/M] and [N/M] abundances)

and the Ness et al. (2016) mass and age estimates (inferred via spectroscopic mass mea-

surements and isochrone fitting). The left panel shows the comparison for mass and the

right panel shows the comparison for age. The agreement with the Ness et al. (2016) values

despite the two very different approaches supports the plausibility of our measurements.

4. Discussion

Using a data-driven approach to spectral modeling, and fitting for all labels simultane-

ously, we find that we can measure accurate and precise carbon and nitrogen abundances

from low-resolution (R ∼ 1800) LAMOST spectra. For post dredge-up giants, as in the

sample from Martig et al. (2016), these [C/M] and [N/M] measurements enable mass and

age estimates across the sky, to 0.08 dex in mass and to 0.2 dex in age. With this new set of

ages, we have a very different spatial sampling than APOGEE: we have essentially tied in-

the-disk and off-the-disk ages onto the same scale, as LAMOST has a much better sampling

of the thick disk than APOGEE.

The success of our data-driven approach in extracting information on [C/M] and [N/M]

from blended regions (see Figure 4) holds promise for a natural extension of this work

to measuring additional individual element abundances. The Cannon has already been

successful at measuring individual abundances from APOGEE spectra, in part because the

model is not restricted to unblended element windows (Ness et al. 2016; Casey et al. 2016;
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Fig. 7.— The distribution on the sky (in Galactic coordinates) of stars with age mea-

surements: the top panel shows the sample from Ness et al. (2016) (∼70,000 objects) and

the bottom panel overlays these values with 230,901 ages inferred via [C/M] and [N/M] by

The Cannon from the LAMOST spectra. The much more extensive area coverage of the

LAMOST data is immediately apparent.
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Hogg et al. 2016). Indeed, Ting et al. 2016b predicted using theoretical models that spectra

of comparable resolution to LAMOST should not only contain sufficient information to

precisely constrain [C/M] and [N/M], but also a large suite of other individual element

abundances, such as aluminum, calcium, manganese, and nickel.

For the purpose of [C/M] and [N/M] measurement in this work, it was helpful to apply

broad masks to the spectra, to fully remove telluric and interstellar absorption features. De-

pending on which spectral regions encode information on [X/H], however, fitting for these

additional labels would likely require more precise masking in order to avoid removing im-

portant signatures. The quality of the data reduction may limit which individual [X/H] can

be returned.

Finally, at nearly identical values of {Teff , log g, [Fe/H]} on the giant branch, mass, or

age, is highly predictive of luminosity. Age constraints to 0.2 dex could therefore be useful

for improving estimates of stellar luminosity, and thus distance.

The code used to produce the results described in this paper was written in Python and

is available online in an open-source repository.2
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