We prove a theorem relating torus-equivariant coherent sheaves on toric
varieties to polyhedrally-constructible sheaves on a vector space. At the level
of K-theory, the theorem recovers Morelli's description of the K-theory of a
smooth projective toric variety. Specifically, let X be a proper toric
variety of dimension n and let M_\bR = \mathrm{Lie}(T_\bR^\vee)\cong \bR^n
be the Lie algebra of the compact dual (real) torus T_\bR^\vee\cong U(1)^n.
Then there is a corresponding conical Lagrangian \Lambda \subset T^*M_\bR and
an equivalence of triangulated dg categories \Perf_T(X) \cong
\Sh_{cc}(M_\bR;\Lambda), where \Perf_T(X) is the triangulated dg category of
perfect complexes of torus-equivariant coherent sheaves on X and
\Sh_{cc}(M_\bR;\Lambda) is the triangulated dg category of complex of sheaves
on M_\bR with compactly supported, constructible cohomology whose singular
support lies in Λ. This equivalence is monoidal---it intertwines the
tensor product of coherent sheaves on X with the convolution product of
constructible sheaves on M_\bR.Comment: 20 pages. This is a strengthened version of the first half of
arXiv:0811.1228v3, with new results; the second half becomes
arXiv:0811.1228v