10 research outputs found

    Ibrutinib directly reduces CD8+T cell exhaustion independent of BTK

    Get PDF
    Introduction: Cytotoxic CD8+ T cell (CTL) exhaustion is a dysfunctional state of T cells triggered by persistent antigen stimulation, with the characteristics of increased inhibitory receptors, impaired cytokine production and a distinct transcriptional profile. Evidence from immune checkpoint blockade therapy supports that reversing T cell exhaustion is a promising strategy in cancer treatment. Ibrutinib, is a potent inhibitor of BTK, which has been approved for the treatment of chronic lymphocytic leukemia. Previous studies have reported improved function of T cells in ibrutinib long-term treated patients but the mechanism remains unclear. We investigated whether ibrutinib directly acts on CD8+ T cells and reinvigorates exhausted CTLs. Methods: We used an established in vitro CTL exhaustion system to examine whether ibrutinib can directly ameliorate T cell exhaustion. Changes in inhibitory receptors, transcription factors, cytokine production and killing capacity of ibrutinib-treated exhausted CTLs were detected by flow cytometry. RNA-seq was performed to study transcriptional changes in these cells. Btk deficient mice were used to confirm that the effect of ibrutinib was independent of BTK expression. Results: We found that ibrutinib reduced exhaustion-related features of CTLs in an in vitro CTL exhaustion system. These changes included decreased inhibitory receptor expression, enhanced cytokine production, and downregulation of the transcription factor TOX with upregulation of TCF1. RNA-seq further confirmed that ibrutinib directly reduced the exhaustion-related transcriptional profile of these cells. Importantly, using btk deficient mice we showed the effect of ibrutinib was independent of BTK expression, and therefore mediated by one of its other targets. Discussion: Our study demonstrates that ibrutinib directly ameliorates CTL exhaustion, and provides evidence for its synergistic use with cancer immunotherapy.</p

    Overcoming immune checkpoint blockade resistance in solid tumors with intermittent ITK inhibition

    Get PDF
    Cytotoxic CD8 + T cell (CTL) exhaustion is driven by chronic antigen stimulation. Reversing CTL exhaustion with immune checkpoint blockade (ICB) has provided clinical benefits in different types of cancer. We, therefore, investigated whether modulating chronic antigen stimulation and T-cell receptor (TCR) signaling with an IL2-inducible T-cell kinase (ITK) inhibitor, could confer ICB responsiveness to ICB resistant solid tumors. In vivo intermittent treatment of 3 ICB-resistant solid tumor (melanoma, mesothelioma or pancreatic cancer) with ITK inhibitor significantly improved ICB therapy. ITK inhibition directly reinvigorate exhausted CTL in vitro as it enhanced cytokine production, decreased inhibitory receptor expression, and downregulated the transcription factor TOX. Our study demonstrates that intermittent ITK inhibition can be used to directly ameliorate CTL exhaustion and enhance immunotherapies even in solid tumors that are ICB resistant.</p

    Distinct monocyte subset phenotypes in patients with different clinical forms of chronic Chagas disease and seronegative dilated cardiomyopathy

    Get PDF
    BACKGROUND: Chronic infection with Trypanosoma cruzi leads to a constant stimulation of the host immune system. Monocytes, which are recruited in response to inflammatory signals, are divided into classical CD14hiCD16-, non-classical CD14loCD16+ and intermediate CD14hiCD16+ subsets. In this study, we evaluated the frequencies of monocyte subsets in the different clinical stages of chronic Chagas disease in comparison with the monocyte profile of seronegative heart failure subjects and seronegative healthy controls. The effect of the anti-parasite drug therapy benznidazole on monocyte subsets was also explored. METHODOLOGY/PRINCIPAL FINDINGS: The frequencies of the different monocyte subsets and their phenotypes were measured by flow cytometry. Trypanosoma cruzi-specific antibodies were quantified by conventional serological tests. T. cruzi-infected subjects with mild or no signs of cardiac disease and patients suffering from dilated cardiomyopathy unrelated to T. cruzi infection showed increased levels of non-classical CD14loCD16+ monocytes compared with healthy controls. In contrast, the monocyte profile in T. cruzi-infected subjects with severe cardiomyopathy was skewed towards the classical and intermediate subsets. After benznidazole treatment, non-classical monocytes CD14loCD16+ decreased while classical monocytes CD14hiCD16-increased. CONCLUSIONS/SIGNIFICANCE: The different clinical stages of chronic Chagas disease display distinct monocyte profiles that are restored after anti-parasite drug therapy. T. cruzi-infected subjects with severe cardiac disease displayed a profile of monocytes subsets suggestive of a more pronounced inflammatory environment compared with subjects suffering from heart failure not related to T. cruzi infection, supporting that parasite persistence might also alter cell components of the innate immune system

    Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning

    Get PDF
    Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient's immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy. Developing predictive methods to identify patients with high risk of severe COVID-19 disease is of crucial importance. Authors show here that by measuring anti-SARS-CoV-2 antibody and cytokine levels at the time of hospital admission and integrating the data by unsupervised hierarchical clustering/machine learning, it is possible to predict unfavourable outcome

    Trypanosoma cruzi-specific IFN-γ-producing cells in chronic Chagas disease associate with a functional IL-7/IL-7R axis.

    Get PDF
    BackgroundThe severity of cardiac disease in chronic Chagas disease patients is associated with different features of T-cell exhaustion. Here, we assessed whether the ability of T cells to secrete IFN-γ in response to T. cruzi was linked to disruption in immune homeostasis and inflammation in patients with chronic Chagas disease.Methodology/principal findingsPBMCs from chronic Chagas disease patients and uninfected controls were examined for frequencies of T. cruzi-responsive IFN-γ-producing cells by ELISPOT and cellular expression and function of IL-7R using flow cytometry. Serum levels of IL-7, IL-21, IL-27, soluble IL-7R, and inflammatory cytokines were also evaluated by ELISA or CBA techniques. Patients possessing T. cruzi-specific IFN-γ-producing cells (i.e. IFN-γ producers) had higher levels of memory T cells capable of modulating the alpha chain of IL-7R and an efficient response to IL-7 compared to that in patients lacking (i.e. IFN-γ nonproducers) parasite-specific T-cell responses. IFN-γ producers also showed low levels of soluble IL-7R, high basal expression of Bcl-2 in T cells and low basal frequencies of activated CD25+ T cells. Modulation of IL-7R was inversely associated with serum IL-6 levels and positively associated with serum IL-8 levels. Circulating IL-21 and IL-27 levels were not associated with the frequency of IFN-γ producing cells but were reduced in less severe clinical forms of the disease. In vitro stimulation of PBMCs with IL-7 or IL-27 enhanced IFN-γ production in IFN-γ producers but not in IFN-γ nonproducers.Conclusions/significanceAlterations of the IL-7/IL-7R axis and in the levels of inflammatory cytokines were linked to impaired T. cruzi-specific IFN-γ production. These alterations might be responsible of the process of immune exhaustion observed in chronic Chagas disease

    Perturbed T cell IL-7 receptor signaling in chronic Chagas disease

    Get PDF
    Fil: Albareda, María Cecilia. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Pérez-Mazliah, Damián E. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Natale, M. Ailén. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Castro Eiro, Melisa D. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Alvarez, María G. Hospital Interzonal General de Agudos Eva Perón; Argentina.Fil: Viotti, Rodolfo. Hospital Interzonal General de Agudos Eva Perón; Argentina.Fil: Bertocchi, Graciela. Hospital Interzonal General de Agudos Eva Perón; Argentina.Fil: Lococo, Bruno. Hospital Interzonal General de Agudos Eva Perón; Argentina.Fil: Tarleton, Rick L. enter for Tropical and Emerging Global Diseases, Athens, Georgia; Estados Unidos.Fil: Laucella, Susana A. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.We have previously demonstrated that immune responses in subjects with chronic Trypanosoma cruzi infection display features common to other persistent infections with signs of T cell exhaustion. Alterations in cytokine receptor signal transduction have emerged as one of the cell-intrinsic mechanisms of T cell exhaustion. In this study, we performed an analysis of the expression of IL-7R components (CD127 and CD132) on CD4(+) and CD8(+) T cells and evaluated IL-7-dependent signaling events in patients at different clinical stages of chronic chagasic heart disease. Subjects with no signs of cardiac disease showed a decrease in CD127(+)CD132(+) cells and a reciprocal gain of CD127(-)CD132(+) in CD8(+) and CD4(+) T cells compared with either patients exhibiting heart enlargement or uninfected controls. T. cruzi infection, in vitro, was able to stimulate the downregulation of CD127 and the upregulation of CD132 on T cells. IL-7-induced phosphorylation of STAT5 as well as Bcl-2 and CD25 expression were lower in T. cruzi-infected subjects compared with uninfected controls. The serum levels of IL-7 were also increased in chronic chagasic patients. The present study highlights perturbed IL-7/IL-7R T cell signaling through STAT5 as a potential mechanism of T cell exhaustion in chronic T. cruzi infection

    Impaired frequencies and function of platelets and tissue remodeling in chronic Chagas disease

    Get PDF
    Fil: Pengue, Claudia. Hospital Interzonal General de Agudos Eva Perón, Buenos Aires; Argentina.Fil: Cesar, Gonzalo. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Alvarez, María Gabriela. Hospital Interzonal General de Agudos Eva Perón, Buenos Aires; Argentina.Fil: Bertocchi, Graciela. Hospital Interzonal General de Agudos Eva Perón, Buenos Aires; Argentina.Fil: Lococo, Bruno. Hospital Interzonal General de Agudos Eva Perón, Buenos Aires; Argentina.Fil: Viotti, Rodolfo. Hospital Interzonal General de Agudos Eva Perón, Buenos Aires; Argentina.Fil: Natale , María Ailén. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Castro Eiro, Melisa D.. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Cambiazzo , Silvia S.. Hospital General de Agudos Dr. Teodoro Álvarez, Buenos Aires; Argentina.Fil: Perroni, Nancy. Hospital Interzonal General de Agudos Eva Perón, Buenos Aires; Argentina.Fil: Nuñez, Myriam. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Matemática y Física, Buenos Aires; Argentina.Fil: Albareda, María Cecilia. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Laucella, Susana A.. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Chronic inflammation, as a consequence of the persistent infection with Trypanosoma cruzi, leads to continuous activation of the immune system in patients with chronic Chagas disease. We have previously shown that increased sera levels of soluble P-selectin are associated with the severity of the cardiomyopathy distinctive of chronic Chagas disease. In this study, we explored the expression of biomarkers of platelet and endothelial activation, tissue remodeling, and mediators of the coagulation cascade in patients at different clinical stages of chronic Chagas heart disease. The frequencies of activated platelets, measured by the expression of CD41a and CD62P were decreased in patients with chronic Chagas disease compared with those in uninfected subjects, with an inverse association with disease severity. Platelet activation in response to adenosine diphosphate was also decreased in T. cruzi-infected subjects. A major proportion of T. cruzi infected subjects showed increased serum levels of fibrinogen. Patients with severe cardiac dysfunction showed increased levels of endothelin-1 and normal values of procollagen I. In conclusion, chronic infection with T. cruzi induced hemostatic alterations, even in those patients who do not yet present cardiac symptoms

    Distinct Treatment Outcomes of Antiparasitic Therapy in Trypanosoma cruzi-Infected Children Is Associated With Early Changes in Cytokines, Chemokines, and T-Cell Phenotypes

    Get PDF
    Background: In contrast to adults, Trypanosoma cruzi-infected children have more broadly functional Trypanosoma cruzi-specific T cells, and the total T-cell compartment exhibits fewer signs of immune exhaustion. However, not much is known about the link between immunocompetence and the treatment efficacy for human Chagas disease.Methods: Using cytokine enzyme-linked immunosorbent spot (ELISPOT) polychromatic flow cytometry, cytometric bead assay, multiplex serological assays and quantitative PCR, we evaluated T. cruzi-specific T-cell and antibody immune responses, T-cell phenotypes and parasitemia in children in the early chronic phase of Chagas disease undergoing anti-Trypanosoma cruzi treatment.Results: Treatment with benznidazole or nifurtimox induced a decline in T. cruzi-specific IFN-γ- and IL-2-producing cells and proinflammatory cytokines and chemokines. T-cell responses became detectable after therapy in children bearing T-cell responses under background levels prior to treatment. The total frequencies of effector, activated and antigen-experienced T cells also decreased following anti-T. cruzi therapy, along with an increase in T cells expressing the receptor of the homeostatic cytokine IL-7. Posttreatment changes in several of these markers distinguished children with a declining serologic response suggestive of successful treatment from those with sustained serological responses in a 5-year follow-up study. A multivariate analysis demonstrated that lower frequency of CD4+CD45RA−CCR7−CD62L− T cells prior to drug therapy was an independent indicator of successful treatment.Conclusions: These findings further validate the usefulness of alternative metrics to monitor treatment outcomes. Distinct qualitative and quantitative characteristics of T cells prior to drug therapy may be linked to treatment efficacy

    Image_1_Ibrutinib directly reduces CD8+T cell exhaustion independent of BTK.tif

    No full text
    IntroductionCytotoxic CD8+ T cell (CTL) exhaustion is a dysfunctional state of T cells triggered by persistent antigen stimulation, with the characteristics of increased inhibitory receptors, impaired cytokine production and a distinct transcriptional profile. Evidence from immune checkpoint blockade therapy supports that reversing T cell exhaustion is a promising strategy in cancer treatment. Ibrutinib, is a potent inhibitor of BTK, which has been approved for the treatment of chronic lymphocytic leukemia. Previous studies have reported improved function of T cells in ibrutinib long-term treated patients but the mechanism remains unclear. We investigated whether ibrutinib directly acts on CD8+ T cells and reinvigorates exhausted CTLs. MethodsWe used an established in vitro CTL exhaustion system to examine whether ibrutinib can directly ameliorate T cell exhaustion. Changes in inhibitory receptors, transcription factors, cytokine production and killing capacity of ibrutinib-treated exhausted CTLs were detected by flow cytometry. RNA-seq was performed to study transcriptional changes in these cells. Btk deficient mice were used to confirm that the effect of ibrutinib was independent of BTK expression.ResultsWe found that ibrutinib reduced exhaustion-related features of CTLs in an in vitro CTL exhaustion system. These changes included decreased inhibitory receptor expression, enhanced cytokine production, and downregulation of the transcription factor TOX with upregulation of TCF1. RNA-seq further confirmed that ibrutinib directly reduced the exhaustion-related transcriptional profile of these cells. Importantly, using btk deficient mice we showed the effect of ibrutinib was independent of BTK expression, and therefore mediated by one of its other targets. DiscussionOur study demonstrates that ibrutinib directly ameliorates CTL exhaustion, and provides evidence for its synergistic use with cancer immunotherapy.</p
    corecore