303 research outputs found

    Rita Levi-Montalcini 1909–2012

    Get PDF

    Smyd2 conformational changes in response to p53 binding: role of the C-terminal domain.

    Get PDF
    Smyd2 lysine methyltransferase regulates monomethylation of histone and nonhistone lysine residues using S-adenosylmethionine cofactor as the methyl donor. The nonhistone interactors include several tumorigenic targets, including p53. Understanding this interaction would allow the structural principles that underpin Smyd2-mediated p53 methylation to be elucidated. Here, we performed μ-second molecular dynamics (MD) simulations on binary Smyd2-cofactor and ternary Smyd2-cofactor-p53 peptide complexes. We considered both unmethylated and monomethylated p53 peptides (at Lys370 and Lys372). The results indicate that (a) the degree of conformational freedom of the C-terminal domain of Smyd2 is restricted by the presence of the p53 peptide substrate, (b) the Smyd2 C-terminal domain shows distinct dynamic properties when interacting with unmethylated and methylated p53 peptides, and (c) Lys372 methylation confines the p53 peptide conformation, with detectable influence on Lys370 accessibility to the cofactor. These MD results are therefore of relevance for studying the biology of p53 in cancer progression

    Cell death pathology: Perspective for human diseases

    Get PDF
    AbstractApoptosis, a genetically regulated form of cell death with distinct biochemical and morphological features, plays a relevant physiological and pathological role in the organism, being pivotal in the maintenance of tissue development and homeostasis in the adult as well as in the regulation of immune responses. Deregulation of this process causes several human disorders including cancer, autoimmune and neurodegenerative diseases. Thus, modulation of the apoptotic process and of cell death in general, is a potential therapeutic approach for the treatment of several human pathologies

    Transglutaminase 2 Kinase Activity Facilitates Protein Kinase A-induced Phosphorylation of Retinoblastoma Protein

    Get PDF
    Transglutaminase 2 (TG2, tissue transglutaminase) is a multifunctional protein involved in cross-linking a variety of proteins, including retinoblastoma protein (Rb). Here we show that Rb is also a substrate for the recently identified serine/threonine kinase activity of TG2 and that TG2 phosphorylates Rb at the critically important Ser780 residue. Furthermore, phosphorylation of Rb by TG2 destabilizes the Rb.E2F1 complex. TG2 phosphorylation of Rb was abrogated by high Ca2+ concentrations, whereas TG2 transamidating activity was inhibited by ATP. TG2 was itself phosphorylated by protein kinase A (PKA). Phosphorylation of TG2 by PKA attenuated its transamidating activity and enhanced its kinase activity. Activation of PKA in mouse embryonic fibroblasts (MEF) with dibutyryl-cAMP enhanced phosphorylation of both TG2 and Rb by a process that was inhibited by the PKA inhibitor H89. Treatment with dibutyryl-cAMP enhanced Rb phosphorylation in MEFtg2+/+ cells but not in MEFtg2-/- cells. These data indicate that Rb is a substrate for TG2 kinase activity and suggest that phosphorylation of Rb, which results from activation of PKA in fibroblasts, is indirect and requires TG2 kinase activity

    Cell death pathology: Cross-talk with autophagy and its clinical implications

    Get PDF
    AbstractAutophagy is a self-digesting mechanism that cells adopt to respond to stressful stimuli. Morphologically, cells dying by autophagy show multiple cytoplasmic double-membraned vacuoles, and, if prolonged, autophagy can lead to cell death, "autophagic cell death". Thus, autophagy can act both as a temporary protective mechanism during a brief stressful episode and be a mode of cell death in its own right. In this mini-review we focus on recent knowledge concerning the connection between autophagy and programmed cell death, evaluating their possible implications for therapy in pathologies like cancer and neurodegeneration

    Context is everything: extrinsic signalling and gain-of-function p53 mutants

    Get PDF
    Abstract: The TP53 genomic locus is a target of mutational events in at least half of cancers. Despite several decades of study, a full consensus on the relevance of the acquisition of p53 gain-of-function missense mutants has not been reached. Depending on cancer type, type of mutations and other unidentified factors, the relevance for tumour development and progression of the oncogenic signalling directed by p53 mutants might significantly vary, leading to inconsistent observations that have fuelled a long and fierce debate in the field. Here, we discuss how interaction with the microenvironment and stressors might dictate the gain-of-function effects exerted by individual mutants. We report evidence from the most recent literature in support of the context dependency of p53 mutant biology. This perspective article aims to raise a discussion in the field on the relevance that context might have on p53 gain-of-function mutants, assessing whether this should generally be considered a cell non-autonomous process

    p63 transcriptionally regulates the expression of matrix metallopeptidase 13

    Get PDF
    p63 is a transcriptional factor belonging to p53 family of genes. Beside the role in cancer, partially shared with p53 and the other member p73, p63 also plays exclusive roles in development and homeostasis of ectodermal/epidermal-related organs. Here we show that p63 transcriptionally controls the expression of the matrix metallopeptidase 13 (MMP13). p63 binds a p53-like responsive element in the human promoter of MMP13, thus promoting the activation of its transcription. The catalytic activity of MMP13 is required in high invasion capacity of metastatic cancer cells, however, although p63 and MMP13 expression correlates in cancer patients, their co-expression does not predict cancer patient survival. Our results demonstrate that p63 directly controls MMP13 expression

    Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors.

    Get PDF
    The endocannabinoid anandamide (AEA) is shown to induce apoptotic bodies formation and DNA fragmentation, hallmarks of programmed cell death, in human neuroblastoma CHP100 and lymphoma U937 cells. RNA and protein synthesis inhibitors like actinomycin D and cycloheximide reduced to one-fifth the number of apoptotic bodies induced by AEA, whereas the AEA transporter inhibitor AM404 or the AEA hydrolase inhibitor ATFMK significantly increased the number of dying cells. Furthermore, specific antagonists of cannabinoid or vanilloid receptors potentiated or inhibited cell death induced by AEA, respectively. Other endocannabinoids such as 2-arachidonoylglycerol, linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide did not promote cell death under the same experimental conditions. The formation of apoptotic bodies induced by AEA was paralleled by increases in intracellular calcium (3-fold over the controls), mitochondrial uncoupling (6-fold), and cytochrome c release (3-fold). The intracellular calcium chelator EGTA-AM reduced the number of apoptotic bodies to 40% of the controls, and electrotransferred anti-cytochrome c monoclonal antibodies fully prevented apoptosis induced by AEA. Moreover, 5-lipoxygenase inhibitors 5,8,11,14-eicosatetraynoic acid and MK886, cyclooxygenase inhibitor indomethacin, caspase-3 and caspase-9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK, but not nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester, significantly reduced the cell death-inducing effect of AEA. The data presented indicate a protective role of cannabinoid receptors against apoptosis induced by AEA via vanilloid receptors

    Commensal microbes and p53 in cancer progression.

    Get PDF
    Aetiogenesis of cancer has not been fully determined. Recent advances have clearly defined a role for microenvironmental factors in cancer progression and initiation; in this context, microbiome has recently emerged with a number of reported correlative and causative links implicating alterations of commensal microbes in tumorigenesis. Bacteria appear to have the potential to directly alter physiological pathways of host cells and in specific circumstances, such as the mutation of the tumour suppressive factor p53, they can also directly switch the function of a gene from oncosuppressive to oncogenic. In this minireview, we report a number of examples on how commensal microbes alter the host cell biology, affecting the oncogenic process. We then discuss more in detail how interaction with the gut microbiome can affect the function of p53 mutant in the intestinal tumorigenesis
    • …
    corecore