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Autophagy is a self-digesting mechanism that cells adopt to respond to stressful stimuli. Morphologically,
cells dying by autophagy show multiple cytoplasmic double-membraned vacuoles, and, if prolonged,
autophagy can lead to cell death, ‘‘autophagic cell death’’. Thus, autophagy can act both as a temporary
protective mechanism during a brief stressful episode and be a mode of cell death in its own right. In this
mini-review we focus on recent knowledge concerning the connection between autophagy and pro-
grammed cell death, evaluating their possible implications for therapy in pathologies like cancer and
neurodegeneration.

� 2011 Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

Autophagy is a physiological self digestive process which is in-
volved in the degradation of damaged proteins and intracellular
organelles [1]. Under specific stress circumstances, however,
autophagy contributes to the regulation of proliferation, differenti-
ation and cell death. During autophagy, cytoplasmic proteins,
organelles and other cellular components are surrounded by auto-
phagosomes, which form autolysosomes by fusing with lysosomes,
resulting in the degradation of these components by resident
hydrolases. The link between autophagy and cell death is demon-
strated at the molecular level, for example, by the physical interac-
tion between Bcl2 and Beclin-1 [2], however at the functional level
it is still somewhat controversial. Autophagy undoubtedly en-
hances cell survival in response to nutrient deprivation, but dying
cells often display accumulation of autophagosomes, and sustained
autophagy can lead to cell death.

The molecular basis of autophagy was initially characterised in
yeast in which at least 15 autophagy related genes (ATG) have been
identified; subsequently their mammalian counterparts have also
been characterised (Fig. 1) [3]. While other reviews describe the
molecular pathways of autophagy in detail, here we would like to
draw attention to the fact that knockout and knockdown of Atg
proteins enhances cell death induced by starvation and growth fac-
tor withdrawal (Fig. 1), but in other situations inhibition of autoph-
agy maintains cellular viability [4–11]. The finding of vesicular
D, autophagic cell death.
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accumulation in dying cells has led to the concept of autophagic cell
death (ACD). ACD is defined morphologically as a type of cell death
that occurs in the absence of chromatin condensation and with a
large degree of vacuolization of the cytoplasm. ACD does not neces-
sarily imply that the cell death occurs by autophagy, but that death
occurs concurrently with morphological features of autophagy.
Thus, if cell death occurs only in parallel with autophagic features,
inhibition of autophagy does not alter cell fate, while when autoph-
agy is the crucial effector mechanism of cell death, its inhibition
determines cell fate. Therefore the current definition of ACD has
an important limitation in that it fails to establish the necessary role
of autophagy in the cell death process, and thus contributes to the
confusion in the literature regarding the role of autophagy in cell
death and cell survival.
2. Cross-talk between autophagy and cell death

Increasing evidence is now accumulating on the crosstalk be-
tween apoptotic and autophagy pathways. A key regulator of
autophagy initiation is the mammalian orthologue of the yeast
Atg6, Beclin 1 (Bec1), that forms part of the class III phosphatidylin
ositol 3-kinase (PI3K) complex [12]. The anti-apoptotic protein Bcl-2
was the first to be identified of an increasing number of Bec1-inter-
acting proteins. The dissociation of Bec1 from Bcl-2 is essential for
its autophagic activity, and Bcl-2 only inhibits autophagy when it
is present in the endoplasmic reticulum (ER) (Fig. 2) [2,13–15]. A
similar interaction has also been described for the Bcl-2 homologue,
Bcl-XL [16]. Bec1 has also been shown to be one direct caspase
substrate among the large number of caspase targets [17,18].
Caspase-mediated cleavage of Bec1 results in the loss of its
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Fig. 1. Schematic overview of autophagy. Autophagy can be divided into seven steps: (1) induction; (2) vesicle nucleation; (3) vesicle expansion and completion; (4) retrieval; (5)
fusion; (6) breakdown; (7) efflux. (1) Regulation of induction. Activation of autophagy upon nutrient starvation or growth factor deprivation appears to be mainly mediated by
inhibition of the Tor protein kinase. Formation of the Atg1–Atg13 protein kinase complex occurs downstream of Tor inhibition. (2) Vesicle nucleation. Formation of the Atg1–
Atg13 complex induces acquisition and processing of membrane material for autophagosome formation. The specific components that act in vesicle nucleation are not
completely clear. The PI 3-K complex I, consisting of Vps15, Vps34, Atg6/Vps30 and Atg14, is required for vesicle nucleation in autophagy. (3) Vesicle expansion and completion.
Atg8 undergoes proteolytic cleavage of the C-terminal arginine residue (R), by the Atg4 cysteine protease. Atg8 and Atg12 are ubiquitin-like proteins that are activated by the E1-
like enzyme Atg7. Atg8 and Atg12 are then transferred to the E2-like enzymes Atg3 and Atg10 and are then conjugated to phosphatidylethanolamine (PE) and Atg5, respectively.
Atg8 conjugated to PE acquires the ability to be anchored in the membrane of the PAS (Phagosome Assembly Site) and acts there as a component of the nascent and mature
autophagosome. Atg8 is released from the outer membrane of the completed vesicle by a second Atg4-dependent cleavage. (4) Retrieval. Retrieval involves several other Atg
proteins. Most Atg proteins are soluble and can easily be released from the membrane surface while Atg9 and Atg27 are integral membrane proteins. The mechanism of targeting
and release is unknown. (5) Docking and fusion. Vam3, Vam7, Vti1 and Ykt6, are members of the SNARE family, and, together with Ypt7 and HOPS, they play a role in membrane
fusion in a variety of cellular contexts including autophagy. (6 and 7) Breakdown and efflux. The vesicle lysis step depends on the acidic pH of the vacuole lumen and some
proteinases. Atg15 has also been implicated in this process. Atg15 has sequence similarity to a family of lipases, and seems likely to function directly in vesicle breakdown. Atg22
is an integral membrane protein located in the limiting membrane. Atg22 is not directly required for the breakdown of autophagic bodies within the lysosome/vacuole, but it acts
to mediate the efflux of amino acids resulting from autophagic degradation. This figure was modified from figures previously published by D.J. Klionsky [80,81].

278 I. Amelio et al. / Biochemical and Biophysical Research Communications 414 (2011) 277–281
autophagy-inducing capacity, and the release of pro-apoptotic
factors due to a direct interaction of a C-terminal fragment, Beclin-
1-C, with mitochondria (Fig. 2) [19].

A further link between autophagy and apoptosis is the suppres-
sor effect that the apoptosis inhibitor, cFLIP (Flice inhibitory pro-
tein), can exert on autophagy. FLIP competes with the Atg8
orthologue, LC3, for Atg3 binding, thereby preventing Atg3-medi-
ated autophagosome elongation (Fig. 2) [20]. A further point of
interconnection is mTOR. The PI3K/Akt/mTOR pathway has been
implicated in promoting cell survival in several different tissues
[21]. mTOR, along with AMPK, has been shown to phosphorylate
the mammalian homologue of Atg1, Ulk1, and thus influence the
early stages of autophagic initiation. Therefore regulation of mTOR
may represent a crucial point in regulating the balance between
cell death and autophagy as reported in different contexts [22–24].

The same cellular stress can in some cases activate both the
apoptosis pathway and the autophagic mechanism. As an example,
p73 [25–27] is able to both kill via a c-Abl-dependent activation
[28] that leads to Puma activation [26,29,30] and also to activate
the mTOR pathway [31]. While the former mechanism has been
strongly linked to cancer, the latter still awaits a pathological link,
and, important for this discussion, the two mechanisms are closely
interrelated in cancerogenesis.

These examples highlight the role of factors known to regulate
apoptosis in the regulation of autophagy and suggest potential
mechanisms how the interrelationship between these processes
may be coordinated.
3. Autophagy and cancer therapy

The interaction between apoptosis and autophagy has impor-
tant implications for cancer therapy. Because one function of
autophagy is to act as a survival response to unfavourable condi-
tions, it is reasonable to postulate that it may play a negative role
in cancer therapy outcome.

Many factors and mechanisms, implicated at different levels in
the regulation of apoptosis, show features which can modulate or
predict cytotoxic drug response, such as mitochondrial- and
ER-dependent apoptosis pathways [32–34], death receptor path-
ways [35–37], microRNAs [38–41], and kinases and phosphatases
involved in signal transduction [42,43]. Some of these have already
been targeted therapeutically while others are potential new phar-
macological targets [44,45]. In addition, components of these path-
ways may be useful as molecular biomarkers [46–48] to monitor
and predict cancer therapy outcome.

From what has been discussed above, it is likely that autophagy
may act as a protective mechanism to counteract the cellular stress
induced by chemotherapy. This may be especially the case, since
cells within the tumour core already have low nutrient supplemen-



Fig. 2. Schematic representation of molecular interconnections between autophagy and cell death pathways. Beclin1 is a crucial point of interconnection. Caspase-dependent
cleavage of Beclin1 represses activation of autophagy and promotes apoptosis via the Bec1-C fragment. Bcl-2/Bcl-XL act as both anti-autophagy and anti-apoptotic factors by
specific inhibitory interactions. cFLIP is able to repress the death receptor pathway and counteracts autophagosome elongation.
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tation from the reduced microcirculation. Indeed, cancer cells have
been shown to utilise autophagy in an attempt to circumvent meta-
bolic stress [49]. The group of Eileen White has, indeed, shown that
oncogene addiction requires autophagy to maintain a pool of active
mitochondria which sustain oxidative phosphorylation [50]. Thus
inhibition of autophagy could be considered as a therapeutic tool
in addition to conventional chemotherapy. A relevant role of
autophagy is to provide an alternative energy source during nutrient
starvation and certain other adverse conditions in order to ensure
cell viability. We have recently shown that clomipramine (CMI),
and to an even greater extent its active metabolite des-
methylclomipramine (DCMI), induces the appearance of autoph-
agy-associated structures in the cytoplasm [51], a process
requiring Atg5. In fact, CMI/DCMI alter autophagic flux and, there-
fore, they could be exploited for novel therapeutic usage to potenti-
ate the effect of chemotherapy. Therefore, as shown for chloroquine,
the blockade of the autophagic flux by CMI/DCMI enhances therapy-
induced apoptosis [52]. Recent findings support the hypothesis that
autophagy regulates conventional chemotherapy, since apoptosis in
response to TRAIL agonists is enhanced when autophagy is inhibited
[53]. Furthermore, increased autophagy is observed in an ery-
Table 1
Autophagy involvement in cytotoxic drug response.

Cancer type Treatmen

Colon cancer cell line; T leukaemia cell line TRAIL ago

Erythroleukaemia cell line Vincristin

Melanoma cell line ESOM

Different carcinoma cell lines Premexet
combinat

Non-small-cell lung cancer cell line (NSCLC); acute lymphoblastic
leukaemia cell line (ALL)

Obatoclax
throleukaemia cell line (TF1) after apigenin treatment and results
in a decreased response to vincristine induced-cell death [54]. Con-
sistently, autophagy has also been shown to promote adaptive
autophagy after proton pump inhibitor treatment with esomepraz-
ole in melanoma cells with corresponding treatment resistance. In-
deed, inhibition of autophagy, by knockdown of Atg5 and Bec1,
significantly increased esomeprazole cytotoxicity [55]. Moreover,
apart from classical apoptosis, autophagy has been shown to protect
cells from caspase-independent cell death following cytochrome c
release [56].

These and other data have led to a start of pharmacological tri-
als of autophagy inhibitors as sensitizers to anti-cancer therapy
[57]. But there is a need for caution here. There is some data sug-
gesting that at least some anti-cancer agents can induce ACD, and
thus, autophagic inhibition would result in a reduced therapeutic
response (Table 1). Premexetred, and the multikinase inhibitors,
such as sorafenib act synergistically to enhance tumour killing
via the promotion of a toxic form of autophagy that leads to activa-
tion of the intrinsic apoptosis pathway [58]. In a similar manner,
the pan-inhibitor of Bcl-2, Obatoclax, currently in clinical develop-
ment, exerts anti-cancer effects, promoting both apoptosis and
t Observation Ref.

nists Inhibition of autophagy increases TRAIL
response

[53]

Apiegenin-induced autophagy decreases
vincristin response

[54]

Inhibition of autophagy increases ESOM
response

[55]

red/Sorafenib
ion

The combination increases pro-cell death
autophagy

[58]

Treatment induced both cell death and
autophagy

[59,60]
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autophagy in non-small-cell lung cancer (NSCLC) and acute lym-
phoblastic leukaemia (ALL) [59,60]. Thus, the overall situation is
complex, and the potential benefit of inhibition of autophagy
seems likely to vary between individual tumour types and even
within the same tumour over time. For example, the androgen
receptor (AR), that mediates adaptation to cellular stress in pros-
tate cancer, exerts repressive effects on autophagy and cell death
by upregulating the endoplasmic reticulum chaperone glucose-
regulated protein 78/BiP (Grp78/Bip) [61], suggesting a contribu-
tion of the autophagic pathway to cell death. On the contrary,
the estrogen-induced gene, EIG121, implicated in endometrial car-
cinomas, may protect cells from death by upregulating autophagy
under stress conditions, such as starvation and exposure to cyto-
toxic agents [62].
4. Autophagy and neurodegeneration

Inappropriate activation of cell death pathways has long been
implicated in the pathogenesis of neurodegeneration [63–65]. Thus,
many reports have correlated molecular activation of cell death
pathways with degenerative neurological disease, such as mito-
chondrial dysfunction in Huntington’s [66–68], 14-3-3 proteins in
Parkinson’s [69], the NF-KB pathway activation in ischemic injury
[70] microRNAs in SIV/HIV neurological disease [71] and endoplas-
mic reticulum stress in autism disorder [72]. However, the role of
autophagy in these pathologies is mostly poorly understood.

However, there is now good evidence of autophagosome accu-
mulation in neurons [73,74]. Recent findings have shown that
autophagy-dependent degradation is able to restrict aggregate
accumulation of pathogenic proteins [75], and furthermore phar-
macological induction of autophagy has been reported to slow pro-
gression of neuronal degeneration by reducing aggregates in
Huntington’s disease [76]. However other studies report that
autophagy may be detrimental when massive accumulation of
undegraded autophagic vacuoles occurs, as is observed in many
neurodegenerative diseases. Inhibition of autophagosome forma-
tion has been reported to decrease neuronal cell death in Alzhei-
mer’s disease, frontotemporal dementia and ischemic injury,
where low autophagosome clearance produces vesicle accumula-
tion [77,78]. Autophagosome accumulation in neurons can result
from an increase in autophagic activation or impaired vesicle clear-
ance, though the relative contribution of these mechanisms is
unclear.

Pharmacological compounds able to increase autophagosome
clearance are still unavailable for therapy. However, lithium treat-
ment, widely used in bipolar mood disorder, has been reported to
exert a neuroprotective effect in models of brain ischemia by
repressing autophagy [79]. Therefore, as with the implications in
cancer chemotherapy, the promotion or inhibition of autophagy
in neurological disease would appear to depend on the specific dis-
ease and maybe its stage.

As outlined in this review, much remains to be understood how
autophagic pathways are integrated with cell death pathways,
and, in particular, how protective autophagy and ACD contribute
to proliferative and degenerative pathologies. From our present
understanding, autophagy modulation seems to require a targetted
approach for each specific pathology, both in relation to cancer and
neurodegeneration. Clearly, more work is required before the ther-
apeutic modulation of autophagy becomes an established clinical
tool.
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