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Apoptosis, a genetically regulated form of cell death with distinct biochemical and morphological fea-
tures, plays a relevant physiological and pathological role in the organism, being pivotal in the mainte-
nance of tissue development and homeostasis in the adult as well as in the regulation of immune
responses. Deregulation of this process causes several human disorders including cancer, autoimmune
and neurodegenerative diseases. Thus, modulation of the apoptotic process and of cell death in general,
is a potential therapeutic approach for the treatment of several human pathologies.

� 2011 Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

Since 1965, when the first description of programmed cell death
was independently made by Richard Lockshin and John Kerr,
searching for the term apoptosis on PubMed yields 206,244 papers.
Indeed, during the last year, nearly 20,000 papers have been pub-
lished using the same search term, indicating that apoptosis re-
mains a major interest in science, accounting for over 3% of all
scientific publications. This is what John Kerr [1,2] originally wrote,
suggesting the involvement of apoptosis at both physiological and
pathological levels:

‘‘Apoptosis seems to be involved in cell turnover in many
healthy adult tissues and is responsible for focal elimination
of cells during normal embryonic development. It occurs spon-
taneously in untreated malignant neoplasms, and participates
in at least some types of therapeutically induced tumour regres-
sion. It is implicated in both physiological involution and atro-
phy of various tissues and organs. It can also be triggered by
noxious agents, both in the embryo and adult animal.’’
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At the present time, a long list of pathologies is associated with
deregulation of apoptosis, including cancer (carcinoma, sarcoma,
leukemia, lymphoma, and myeloma), autoimmune diseases (sys-
temic lupus erythematosus, immune-mediated thrombocytopenia,
autoimmune neutropenia, glomerulonephritis, rheumatoid arthri-
tis, Hashimoto’s thyroiditis, insulin dependent diabetes mellitus,
and multiple sclerosis) and viral infections (Poxvirus, Adenovirus,
and Herpesvirus). In contrast, excessive apoptosis has been associ-
ated, for example, with neurodegenerative disorders (Parkinson’s,
Alzheimer’s, Huntington’s [3], amyotrophic lateral sclerosis, cere-
bellar degeneration, status epilepticus [4], prion disease [5], glau-
coma [6,7], diabetic retinophaty [8], retinitis pigmentosa [9], and
spinal muscular atrophy), AIDS, liver disease, haematological dis-
eases and ischemic injury (hypoxia-ischemia [10], stroke [11],
and myocardial infarction). In 45 years of research on cell death,
we have also learned that modulation of apoptosis could be useful
in the treatment of these different pathologies. Indeed, control of
cancer through the induction of apoptosis is the main therapeutic
approach in the clinic [12–15]. Correspondingly, the prevention or
delay of apoptosis would seem appropriate in diseases where
excessive cell death is present, such as neurodegenerative disor-
ders [16,17].
2. Is cell death finished?

For the first time in the last 25 years, the number of publica-
tions in cell death has not increased. Does this decline mean the
beginning of the end for the cell death field? In fact, the number
of papers on, sensu strictu, the basic molecular mechanisms of cell
death is decreasing. The real reason for this apparent decline is the
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Table 1
Apoptosis-based clinical trials.

Target Reagent Principle Company Effects Trial status

TRAIL HGS-ETR1 Agonist TRAIL-R1 mAb HGS Apoptosis induction Phase II Completed
Carcinoma
Non-Small-Cell Lung
Lymphoma

HGS-ETR2 Agonist TRAIL-R2 mAb HGS Apoptosis induction Phase I
Kidney Cancer
Lymphoma
Neuroblastoma

PRO1762 Soluble human Apo2L/TRAIL Amgen Apoptosis induction Phase I
Solid Tumor
Non-Hodgkin
Lymphoma

TRA-8 Agonist TRAIL-R2 mAb Apoptosis induction Phase II Ovarian Cancer

CD95 CD95-Fc Humanized CD95 Fc-decoy
construct

ApoGenix Inhibition of CD95
signaling

Phase II Glioblastoma
Phase I GvDH

SMAC AT-406 XIAP-Smac mimetic Ascenta
Therapeutics

Tumor suppression Phase I
Solid Tumor
Lymphoma

AEG35156 XIAP antisense oligonucleotide Ascenta
Therapeutics

Antitumor activity Phase I/II Terminated
Human mammary
Carcinoma
Phase I Terminated
Advanced cancer

Low MW SMAC mimetc
(LBW247)

Inhibitors of XIAP, cIAP-1 and 2 Phase Ib Clinical trials

SURVIVIN LY2181308 Survivin antisense Eli Lilly Antitumor activity Phase II Completed, In
combination therapy in
AML
Phase I/II withdrawn
Hepatocellular
Carcinoma

MPT Lonidamine Dichlorinated indazole-3-carboxil
acid derivate

Threshold
Pharmaceuticals

Permeabilize
mitochondria

Phase II/III Terminated
Beningn
Prostatic Hyperplasia

Cladribine (Litak) 2-chloro-20 dexyadenosine Apoptosis induction Approved for Hairy-cell
leukemia

Verterporfin Porphyrin photosensitizer Triggering of cytochrome
c release

Phase II/III
Photodynamic therapy,
Advanced Pancreatic
Cancer

Betulinic acid Pentacyclic triterpenoid Inducer of apoptosis Phase I/II
Dysplastic Nevus
Syndrome

ANTI-APOPTOTIC Bcl2
MEMBERS

Genasense Bcl-2 antisense oligonucleotides Genta Phase III
Advanced Melanoma
CLL
Phase II
Non-Hodgkin
Lymphoma

p53 INGN201 p53-expressing adenovirus Introgen
Therapeutics

Apoptosis Induction Phase III
Completed In
combination therapy in
Breast
Cancer

SCH58500 p53-expressing adenovirus Schering-Plough Apoptosis Induction Phase I Completed
Ovarian Cancer
Phase III completed, In
combination therapy in
Ovarian
Cancer

ONYX-015 p53 delivery adenovirus Onyx Antitumor activity Withdrawn
Amifostine Restoration of p53 AstraZeneca Restores function of

mutant p53
Phase II/IV Completed,
Colorectal
Head and Neck, Lung
Cancer

Proteasome inhibitors Epoxomicin Streptomyces epoxyketone Onyx Apoptotic effect Carfilzomib analog of
epoxomocin
Phase I/II
Multiple Myeloma

Example of clinical trials on cell death targets, approved by US NIH (http://clinicaltrials.gov/).
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reduced number of basic articles on caspases, on the molecular
mechanisms of the Bcl2 family, on IAPs and so on. Conversely, pub-
lication on the translational aspects of cell death, such as cardio-
vascular diseases, neurodegenerative pathology and applied
oncology, is in fact increasing. Therefore there is a shift from the
basic mechanisms towards its translational aspects. Consequently
a large number of publications are no longer classified in the apop-
tosis category, but fall under categories such as cardiology, immu-
nology, oncology and neurodegeneration. At the same time there is
a significant effort to develop pharmacological regulators of cell
death in these different pathologies, based on particular mecha-
nisms such as inhibitors of Bcl2, IAPs, caspases, p53 and mitochon-
drial permeabilization [18–20]. Table 1 shows a simplified
highlight of some of the clinical trials using regulators of the cell
death pathways.

However, the main mechanisms of cell death have not been
fully clarified at the molecular level. For example, the mechanism
of action of Bcl2 is far from clear; so is the function of Bax and
Bak. Consequently, many questions remain open not only on the
Bcl2 family but also on death receptor signaling, IAPs and several
caspases. The impression that we know all about cell death should
be compared to the late XX century, early XIX century physics, be-
fore Albert Einstein and Richard Feynman. So, several crucial
mechanistic points await clarification and possibly pharmacologi-
cal exploitation.

Last but not least, an incremental understanding has occurred
in alternative regulatory mechanisms. Autophagy has exploded
with a revival of flourishing molecular details [21–28]. And a sim-
ilar expansion is occurring in less known death pathways such as
for example pyroptosis, necroptosis or the Wallerian degeneration.

The consequence of this clinical trend of the cell death field is
that it becomes more diffuse and less focused, resulting in less ‘‘cell
death’’ meetings and more sessions in all specialist medical meet-
ings. It is however pivotal to maintain a central focus for discus-
sions of distinct pathways, pharmaceutical exploitation and
pathological applications.

One thing is definitely clear. The fashion of cell death has ended,
and, as expected, the cover page has been temporarily been taken
by stem cells and a molecular revival of cancer metabolism. But is
not this positive?

Hence, the question ‘‘is cell death finished?’’ is erroneously pro-
posed. The more appropriate formulation should be ‘‘how is cell
death evolving?’’, or ‘‘has cell death become translational?’’
A

Fig. 1. Current trend of cancer related papers on cell death. (A) Numbers of publicatio
following: apoptosis or ‘‘cell death’’ with the specific histological type, according to
tion.html). (B) Numbers of carcinoma-related scientific papers published in 2010 focuse
3. Apoptosis in cancer

If we ask a student an example of pathology that is associated
with defective cell death, the most frequent answer would be can-
cer. Indeed, evasion of apoptosis is one of the basic features of can-
cer [29]. A large number of papers have described the underlying
molecular mechanisms [30–32]. According to the histological
National Cancer Institute classification, cancer can be classified in
five major categories: carcinoma, sarcoma, myeloma, leukemia
and lymphoma. Focusing only on 2010, apoptosis is present in all
cancer types, being predominant in carcinoma [33–37] and leuke-
mia [38–40] (Fig. 1A). Thus, despite the fact that leukemia accounts
for just 3% of all cancer cases [41], it is the second most investi-
gated cancer from the apoptotic point of view. Looking at carcino-
mas, that accounts for about 80% of all cancer cases; the number of
publications in 2010 in each cancer hallmark (evading apoptosis,
tissue invasion and metastasis, angiogenesis and increased prolif-
eration) is shown in Fig. 1B. We would like to think that this pic-
ture could help us understand the state of the art in this field
and its future direction. A primary role, in our experience, is within
the p53 family [42–47].

Table 1 shows some example of ongoing clinical trials based on
regulators of cell death. Killing malignant cells is the main target of
cancer therapy, but this could be done not just by inducing apop-
tosis, but also through the modulation of other cancer hallmarks.
4. Apotosis in neurodegenerative disorders

Neurodegeneration includes pathology that results in loss of
neurons and is manifest as a broad group of neurological disorders.
Genetic [48,49] and environmental factors [50–53] are the main
causes of neurodegenerative diseases. In general, we can consider
cell death (neuronal death) as the mechanism underlying these
conditions and understanding the pathways that regulate cell
death could help to find the road leading to the development of
therapy [54–56].

In Alzheimer disease (AD), the extracellular accumulation of
fibrillar amyloid b and the intracellular deposition of neurofibril-
lary tangles are the main features [57,58]. Recently, alteration of
TGF-b signaling has been proposed as a further mechanism that
could regulate amyloid-b aggregation and plaque formation and
Lee et al. have found aggregates of TGFb-induced anti-apoptotic
factor 1 (TIAF1 in the hippocampus of AD patients) [59]. Activation
B

ns in 2010 on apoptosis in different type of cancers. The search was performed as
the NCI classification (http://training.seer.cancer.gov/disease/categories/classifica-
d on the selective mechanisms.
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of the caspase machinery precedes tangle formation [60] and caps-
ase-6 as well as caspase-3 [61] have been implicated in AD pathol-
ogy. Indeed, the neuritic beading induced by amyloid precursor
protein (APP) is dependent on caspase-6, since it is inhibited by
z-VEID-fmk (a specific caspase-6 inhibitor) or by overexpressing
a caspase-6 dominant negative [62]. Plaque formation is also sec-
ondary to the accumulation and activation of microglia in the
CA1 area of hippocampus in a mouse model of AD [63].

Parkinson’s disease (PD) is the second most common pathology
affecting the central nervous system. A pivotal role in the patho-
genesis of PD is played by the a-synuclein protein, and the gene
encoding a-synuclein has been found mutated [64,65] or amplified
(triplication) [66] in at least some cases of PD. Moreover, ectopic
expression of a-synuclein leads to cell death through a mechanism
that remains poorly understood [67]. Experimental evidence sug-
gests that the 14-3-3 proteins, negative regulators of cell death,
are deregulated and co-aggregated with a-synuclein Lewy bodies
in PD [68]. In a recent paper, Yacoubian et al. using two different
models of PD, confirm a strong neuroprotective effect of 14-3-3
proteins, in particular of 14-3-3h,�e and�c isoforms [69]. Because
PPAR-c ligands can induce 14-3-3 expression [70], they could
therefore be used as neuroprotective agents in PD therapy.

Several observations indicate that adult neurogenesis is im-
paired in neurodegenerative disorders, suggesting that the postmi-
totic neuron is not the only target affected by these disorders [71].
Indeed, the proliferation and differentiation of neural stem cells
(NSC) into mature neurons is reduced by amyloid-b in human
AD. The p73 gene [72,73], a member of p53 family, is implicated
in the pathogenesis of AD [74–77]. In 2010, several reports identi-
fied p73 as a positive regulator of self-renewal with essential roles
both in the maintenance of embryonic and adult neurogenesis, and
by inhibiting premature senescence of NSC [78–81]. Moreover, this
positive regulation of self-renewal of NCS by p73 is independent of
p53.
5. Apoptosis in immune diseases

Physiologically, the immune system is one of the largest users
of apoptosis, both in terms of the generation of mature immuno-
logically active cells and in limiting the extent of an immune re-
sponse [82]. Thus, apoptosis plays a role in both positive and
negative selection of immune cells in the thymus, for example by
eliminating autoreactive cells, thereby establishing tolerance to
self-tissues. Indeed, it has been estimated that 90% of immature
thymocytes are eliminated by apoptosis during thymic education.
Moreover, the clonal expansion of cells during an immune re-
sponse is curtailed by apoptosis (Activation Induced Cell Death;
AICD) once the response has eliminated its stimulus. In addition,
cytotoxic T and NK cells kill virus-infected or transformed target
cells by inducing apoptotic cell death.

Defective cell death in the immune system can result in autoim-
mune disorders. For example, the CD95/CD95L system is a potent
inducer of apoptosis on activated T lymphocytes and it has been
demonstrated that alteration in Fas-mediated apoptosis is the ba-
sic pathology underlying the autoimmune disease systemic lupus
erythematosus [83]. In apoptosis mediated by CD95, both extrinsic
and intrinsic pathways are activated, depending on the cell context
[84–86]. A layer of complexity in this system has been added by
the observations that, in some cellular contexts, caspase cleavage
of Golgi proteins is required for CD95/CD95L mediated apoptosis
[87,88].

Acquired immunodeficiency syndrome (AIDS) as a consequence
of human immunodeficiency virus (HIV) infection is the most dra-
matic example of immune system pathology linked to excessive
cell death [89]. An update on the current understanding of the role
and mechanisms of accelerated apoptosis of T cells in the immuno-
pathogenesis of HIV infection has now been provided by Cummins
et al. and may be a useful stimulus to revisit our concepts of treat-
ment for this devastating disease [90].
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