9 research outputs found

    Mucosal Challenge Ferret Models of Ebola Virus Disease

    No full text
    Recent studies have shown the domestic ferret (Mustela putorius furo) to be a promising small animal model for the study of Ebola virus (EBOV) disease and medical countermeasure evaluation. To date, most studies have focused on traditional challenge routes, predominantly intramuscular and intranasal administration. Here, we present results from a non-clinical pathogenicity study examining oronasal, oral, and ocular mucosal challenge routes in ferrets. Animals were challenged with 1, 10, or 100 plaque forming units EBOV followed by monitoring of disease progression and biosampling. Ferrets administered virus via oronasal and oral routes met euthanasia criteria due to advanced disease 5–10 days post-challenge. Conversely, all ferrets dosed via the ocular route survived until the scheduled study termination 28-day post-challenge. In animals that succumbed to disease, a dose/route response was not observed; increases in disease severity, febrile responses, serum and tissue viral load, alterations in clinical pathology, and gross/histopathology findings were similar between subjects. Disease progression in ferrets challenged via ocular administration was unremarkable throughout the study period. Results from this study further support the ferret as a model for EBOV disease following oral and nasal mucosa exposure

    Mucosal Challenge Ferret Models of Ebola Virus Disease

    No full text
    Recent studies have shown the domestic ferret (Mustela putorius furo) to be a promising small animal model for the study of Ebola virus (EBOV) disease and medical countermeasure evaluation. To date, most studies have focused on traditional challenge routes, predominantly intramuscular and intranasal administration. Here, we present results from a non-clinical pathogenicity study examining oronasal, oral, and ocular mucosal challenge routes in ferrets. Animals were challenged with 1, 10, or 100 plaque forming units EBOV followed by monitoring of disease progression and biosampling. Ferrets administered virus via oronasal and oral routes met euthanasia criteria due to advanced disease 5–10 days post-challenge. Conversely, all ferrets dosed via the ocular route survived until the scheduled study termination 28-day post-challenge. In animals that succumbed to disease, a dose/route response was not observed; increases in disease severity, febrile responses, serum and tissue viral load, alterations in clinical pathology, and gross/histopathology findings were similar between subjects. Disease progression in ferrets challenged via ocular administration was unremarkable throughout the study period. Results from this study further support the ferret as a model for EBOV disease following oral and nasal mucosa exposure

    Clinical profiles associated with influenza disease in the ferret model.

    Get PDF
    Influenza A viruses continue to pose a threat to human health; thus, various vaccines and prophylaxis continue to be developed. Testing of these products requires various animal models including mice, guinea pigs, and ferrets. However, because ferrets are naturally susceptible to infection with human influenza viruses and because the disease state resembles that of human influenza, these animals have been widely used as a model to study influenza virus pathogenesis. In this report, a statistical analysis was performed to evaluate data involving 269 ferrets infected with seasonal influenza, swine influenza, and highly pathogenic avian influenza (HPAI) from 16 different studies over a five year period. The aim of the analyses was to better qualify the ferret model by identifying relationships among important animal model parameters (endpoints) and variables of interest, which include survival, time-to-death, changes in body temperature and weight, and nasal wash samples containing virus, in addition to significant changes from baseline in selected hematology and clinical chemistry parameters. The results demonstrate that a disease clinical profile, consisting of various changes in the biological parameters tested, is associated with various influenza A infections in ferrets. Additionally, the analysis yielded correlates of protection associated with HPAI disease in ferrets. In all, the results from this study further validate the use of the ferret as a model to study influenza A pathology and to evaluate product efficacy

    A global benchmark study using affinity-based biosensors

    Get PDF
    International audienceTo explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used. (C) 2008 Elsevier Inc. All rights reserved

    A global benchmark study using affinity-based biosensors

    No full text
    corecore