157 research outputs found

    Active Galactic Nuclei: Jets as the Source of Hadrons and Neutrinos

    Get PDF
    Active galactic nuclei are extragalactic sources, and their relativistic hot-plasma jets are believed to be the main candidates of the cosmic-ray origin, above the so-called knee region of the cosmic-ray spectrum. Relativistic shocks, either single or multiple, have been observed or been theorized to be forming within relativistic jet channels in almost all active galactic nuclei sources. The acceleration of non-thermal particles (e.g. electrons, protons) via the shock Fermi acceleration mechanism, is believed to be mainly responsible for the power-law energy distribution of the observed cosmic-rays, which in very high energies can consequently radiate high energy gamma-rays and neutrinos, through related radiation channels. Here, we will focus on the primary particle (hadronic) shock acceleration mechanism, and we will present a comparative simulation study of the properties of single and multiple relativistic shocks, which occur in AGN jets. We will show that the role of relativistic (quasi-parallel either quasi-perpendicular) shocks, is quite important since it can dramatically alter the primary CR spectral indices and acceleration eciencies. These properties being carried onto gamma-ray and neutrino radiation characteristics, makes the combination of them a quite appealing theme for relativistic plasma and shock acceleration physics, as well as observational cosmic-ray, gamma-ray and neutrino astronomy

    Logic programming for deliberative robotic task planning

    Get PDF
    Over the last decade, the use of robots in production and daily life has increased. With increasingly complex tasks and interaction in different environments including humans, robots are required a higher level of autonomy for efficient deliberation. Task planning is a key element of deliberation. It combines elementary operations into a structured plan to satisfy a prescribed goal, given specifications on the robot and the environment. In this manuscript, we present a survey on recent advances in the application of logic programming to the problem of task planning. Logic programming offers several advantages compared to other approaches, including greater expressivity and interpretability which may aid in the development of safe and reliable robots. We analyze different planners and their suitability for specific robotic applications, based on expressivity in domain representation, computational efficiency and software implementation. In this way, we support the robotic designer in choosing the best tool for his application

    Inductive learning of answer set programs for autonomous surgical task planning

    Get PDF
    The quality of robot-assisted surgery can be improved and the use of hospital resources can be optimized by enhancing autonomy and reliability in the robot’s operation. Logic programming is a good choice for task planning in robot-assisted surgery because it supports reliable reasoning with domain knowledge and increases transparency in the decision making. However, prior knowledge of the task and the domain is typically incomplete, and it often needs to be refined from executions of the surgical task(s) under consideration to avoid sub-optimal performance. In this paper, we investigate the applicability of inductive logic programming for learning previously unknown axioms governing domain dynamics. We do so under answer set semantics for a benchmark surgical training task, the ring transfer. We extend our previous work on learning the immediate preconditions of actions and constraints, to also learn axioms encoding arbitrary temporal delays between atoms that are effects of actions under the event calculus formalism. We propose a systematic approach for learning the specifications of a generic robotic task under the answer set semantics, allowing easy knowledge refinement with iterative learning. In the context of 1000 simulated scenarios, we demonstrate the significant improvement in performance obtained with the learned axioms compared with the hand-written ones; specifically, the learned axioms address some critical issues related to the plan computation time, which is promising for reliable real-time performance during surgery

    Autonomous tissue retraction with a biomechanically informed logic based framework

    Get PDF
    Autonomy in robot-assisted surgery is essential to reduce surgeons’ cognitive load and eventually improve the overall surgical outcome. A key requirement for autonomy in a safety-critical scenario as surgery lies in the generation of interpretable plans that rely on expert knowledge. Moreover, the Autonomous Robotic Surgical System (ARSS) must be able to reason on the dynamic and unpredictable anatomical environment, and quickly adapt the surgical plan in case of unexpected situations. In this paper, we present a modular Framework for Robot-Assisted Surgery (FRAS) in deformable anatomical environments. Our framework integrates a logic module for task-level interpretable reasoning, a biomechanical simulation that complements data from real sensors, and a situation awareness module for context interpretation. The framework performance is evaluated on simulated soft tissue retraction, a common surgical task to remove the tissue hiding a region of interest. Results show that the framework has the adaptability required to successfully accomplish the task, handling dynamic environmental conditions and possible failures, while guaranteeing the computational efficiency required in a real surgical scenario. The framework is made publicly available

    Autonomous tissue retraction with a biomechanically informed logic based framework

    Get PDF
    Autonomy in robot-assisted surgery is essential to reduce surgeons\u2019 cognitive load and eventually improve the overall surgical outcome. A key requirement for autonomy in a safety-critical scenario as surgery lies in the generation of interpretable plans that rely on expert knowledge. Moreover, the Autonomous Robotic Surgical System (ARSS) must be able to reason on the dynamic and unpredictable anatomical environment, and quickly adapt the surgical plan in case of unexpected situations. In this paper, we present a modular Framework for Robot-Assisted Surgery (FRAS) in deformable anatomical environments. Our framework integrates a logic module for task-level interpretable reasoning, a biomechanical simulation that complements data from real sensors, and a situation awareness module for context interpretation. The framework performance is evaluated on simulated soft tissue retraction, a common surgical task to remove the tissue hiding a region of interest. Results show that the framework has the adaptability required to successfully accomplish the task, handling dynamic environmental conditions and possible failures, while guaranteeing the computational efficiency required in a real surgical scenario. The framework is made publicly available

    Deliberation in autonomous robotic surgery: a framework for handling anatomical uncertainty

    Get PDF
    Autonomous robotic surgery requires deliberation, i.e. the ability to plan and execute a task adapting to uncertain and dynamic environments. Uncertainty in the surgical domain is mainly related to the partial pre-operative knowledge about patient-specific anatomical properties. In this paper, we introduce a logic-based framework for surgical tasks with deliberative functions of monitoring and learning. The DEliberative Framework for Robot-Assisted Surgery (DEFRAS) estimates a pre-operative patient-specific plan, and executes it while continuously measuring the applied force obtained from a biomechanical pre-operative model. Monitoring module compares this model with the actual situation reconstructed from sensors. In case of significant mismatch, the learning module is invoked to update the model, thus improving the estimate of the exerted force. DEFRAS is validated both in simulated and real environment with da Vinci Research Kit executing soft tissue retraction. Compared with state-of-the-art related works, the success rate of the task is improved while minimizing the interaction with the tissue to prevent unintentional damage

    Inductive learning of surgical task knowledge from intra-operative expert feedback

    Get PDF
    Knowledge-based and particularly logic-based systems for task planning and execution guarantee trustability and safety of robotic systems interacting with humans. However, domain knowledge is usually incomplete. This paper proposes a novel framework for task knowledge refinement from real-time user feedback, based on inductive logic programming

    Mapping natural language procedures descriptions to linear temporal logic templates: an application in the surgical robotic domain

    Get PDF
    Natural language annotations and manuals can provide useful procedural information and relations for the highly specialized scenario of autonomous robotic task planning. In this paper, we propose and publicly release AUTOMATE, a pipeline for automatic task knowledge extraction from expert-written domain texts. AUTOMATE integrates semantic sentence classifcation, semantic role labeling, and identifcation of procedural connectors, in order to extract templates of Linear Temporal Logic (LTL) relations that can be directly implemented in any sufciently expressive logic programming formalism for autonomous reasoning, assuming some low-level commonsense and domain-independent knowledge is available. This is the frst work that bridges natural language descriptions of complex LTL relations and the automation of full robotic tasks. Unlike most recent similar works that assume strict language constraints in substantially simplifed domains, we test our pipeline on texts that refect the expressiveness of natural language used in available textbooks and manuals. In fact, we test AUTOMATE in the surgical robotic scenario, defning realistic language constraints based on a publicly available dataset. In the context of two benchmark training tasks with texts constrained as above, we show that automatically extracted LTL templates, after translation to a suitable logic programming paradigm, achieve comparable planning success in reduced time, with respect to logic programs written by expert programmer
    • …
    corecore