
Vol.:(0123456789)1 3

Applied Intelligence 
https://doi.org/10.1007/s10489-023-04882-0

Mapping natural language procedures descriptions to linear temporal 
logic templates: an application in the surgical robotic domain

Marco Bombieri1  · Daniele Meli1 · Diego Dall’Alba1 · Marco Rospocher1 · Paolo Fiorini1

Accepted: 10 July 2023 
© The Author(s) 2023

Abstract
Natural language annotations and manuals can provide useful procedural information and relations for the highly specialized 
scenario of autonomous robotic task planning. In this paper, we propose and publicly release AUTOMATE, a pipeline for 
automatic task knowledge extraction from expert-written domain texts. AUTOMATE integrates semantic sentence classifi-
cation, semantic role labeling, and identification of procedural connectors, in order to extract templates of Linear Temporal 
Logic (LTL) relations that can be directly implemented in any sufficiently expressive logic programming formalism for 
autonomous reasoning, assuming some low-level commonsense and domain-independent knowledge is available. This is 
the first work that bridges natural language descriptions of complex LTL relations and the automation of full robotic tasks. 
Unlike most recent similar works that assume strict language constraints in substantially simplified domains, we test our 
pipeline on texts that reflect the expressiveness of natural language used in available textbooks and manuals. In fact, we test 
AUTOMATE in the surgical robotic scenario, defining realistic language constraints based on a publicly available dataset. 
In the context of two benchmark training tasks with texts constrained as above, we show that automatically extracted LTL 
templates, after translation to a suitable logic programming paradigm, achieve comparable planning success in reduced time, 
with respect to logic programs written by expert programmers.

Keywords Natural language processing · Autonomous planning · Linear temporal logic · Surgical robotics

1 Introduction

Robots are becoming increasingly used in complex domains 
involving interaction with humans, such as surgery, manu-
facturing, and education. In these domains, safe and trust-
able autonomy is a key objective [1]. This can be achieved 
by adopting a formal representation of task knowledge, e.g., 
with the Planning Domain Description Language (PDDL) 
[2] and logic programming [3] implementations, defining 
task resources and specifications (preconditions and effects 
of actions). However, in complex domains, task knowledge is 
not easily available to robotic programmers. Recent research 
articles [4, 5] have shown that Natural Language Processing 

(NLP) for automatic extraction of task knowledge from texts 
is a promising approach to retrieving relevant procedural 
information about a given domain, thus mitigating the effort 
for robot programmers. However, existing NLP techniques 
often make simplifying assumptions on the semantic and 
syntactic richness of the input texts and the domain itself, 
thus struggling in realistic robotic scenarios where complex 
temporal and logical relations are involved to describe the 
flow of actions and events.

In this paper, we propose AUTOMATE (lAngUage To 
lOgic teMplATEs), a pipeline for the automatic extrac-
tion of procedural Linear Temporal Logic (LTL) [6] 
templates from texts. Our methodology combines auto-
matic detection of procedural sentences, Part-Of-Speech 
(POS) tagging combined with Semantic Role Labeling 
(SRL) to extract relevant semantic information about task 
knowledge, and recognition of LTL connectors accord-
ing to domain-dependent language constraints. We pre-
sent and validate our methodology in the complex yet 
unexplored scenario of surgical robotics, which involves 
highly specialized procedural descriptions. We select 
this domain because, in the surgical context, autonomy 
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has the potential to reduce patients’ recovery time, usage 
and cost of hospital resources, and surgeon’s fatigue [7]. 
This paper specifically investigates the following research 
questions:

[RQ1] Is the automatic translation of procedural tex-
tual descriptions to LTL templates a feasible task with-
out relying on too strict and unrealistic language con-
straints?
[RQ2] If the answer to RQ1 is positive, can the obtained 
templates be automatically translated to logic programs 
for direct implementation in an autonomous robotic archi-
tecture?
[RQ3] Is there any advantage, e.g., in terms of perfor-
mance, in using task knowledge extracted from texts 
rather than expert-written logic programs?

We then make the following contributions to the state of 
the art:

• in the exemplary surgical context, we show how to per-
form a systematic linguistic and stylistic analysis of 
domain-specialized texts, to define realistic language 
constraints (about, e.g., verbal forms and tenses, LTL 
connectors, and semantic procedural structures) and pre-
serve domain expressiveness;

• we propose AUTOMATE for automatic generation of 
LTL templates directly from realistic natural language 
descriptions, and make it publicly available at https:// 
gitlab. com/ altai rLab/ AUTOM ATE;

• we show how to combine LTL templates with common-
sense and domain-independent knowledge to implement 
a robotic-executable logic program and bridge the gap 
between NLP and real robotic applications;

• in the context of two benchmark tasks for surgical robot-
ics, namely, peg transfer and tissue retraction, we write 
texts following the constraints defined before, and we 
show that extracted LTL templates are as successful as 
expert-written logic programs, with the former often 
being more computationally efficient.

The paper is organized as follows: Section 2 revises the 
state of the art in procedural knowledge extraction from text, 
highlighting recent solutions for extracting LTL relations. 
Section 3 shows how to define domain-specific language 
constraints, particularly for surgical robotics. Based on them, 
texts for our benchmark scenarios are presented in Section 4, 
and Section 5.2 details AUTOMATE. Section 6 evaluates 
the planning performance of extracted LTL templates against 
expert-written logic programs. Finally, Section 6.1.1 sum-
marizes the responses to our research questions, highlighting 
the benefits and limitations of AUTOMATE and possible 
future research directions.

2  Related works

The focus of this paper is on machine understanding of pro-
cedural task descriptions expressed in natural language. As 
analyzed in [8], this problem is becoming relevant in many 
different domains and for many purposes, such as question-
answering, intent inference (i.e., prediction of the goal of a 
sequence of actions using commonsense reasoning), task-
based search, activity recognition, and language ground-
ing (e.g., alignment of natural language text to videos or 
images). Recent research has also explored retrieval of LTL 
relations from texts, as reviewed in [9]. In this section, we 
analyze the most recent works focusing on this latter aspect, 
comparing AUTOMATE to them in terms of required input, 
output, the domain of application, and limitations.

Machine understanding of procedural task descrip-
tions is relevant to domains involving repair instructions 
[10–12], technical support documentation [11], cooking 
recipes [11, 13], construction procedures [14, 15], and 
business process modeling [16]. Only a few recent papers 
have investigated the problem of mapping procedural 
knowledge extracted from text to formal logic [5, 17].

In [11], sentences mentioning actions in cooking recipes 
and maintenance manuals are detected with a convolutional 
neural network fed with word embeddings. The goal of the 
authors is to build a procedural workflow, thus recognizing 
actions, generic roles and objects, parts of the text where a 
procedural block begins or ends, and clues about an action 
that is optional or can be executed concurrently with another 
one. This method thus cannot extract LTL templates (the out-
put is a list of sentences or classified tokens), nor recognize 
the precise semantics of an identified object (for example the 
mention of an instrument). [12] deals with procedural sen-
tence understanding in repair instructions, intending to extract 
verbs, tools, and disassembled parts by using BERT-based 
methods. Its purpose is however that of recognizing proce-
dural actors in texts and not that of extracting LTL relation-
ships or an executable workflow. Finally, also [13] deals with 
procedural understanding in cooking recipes by releasing an 
annotated dataset; however, its main goal is to ground dia-
logues in which agents, given a recipe document, guide the 
user to cook a dish, to provide a framework for understand-
ing users’ questions and generating automatic responses. In 
[10], the authors investigate different combinations of features 
(e.g., bags of words, post length, bullet lists) and machine 
learning methods (e.g., neural networks and random forests) 
to detect posts from automotive web communities containing 
descriptions of repair instructions. However, the final goal is 
not to extract LTL specifications or procedural workflows. 
In [14], the authors, with a named entity recognition system 
combined with a relations extraction method, target construc-
tion regulatory Chinese documents, to extract procedural tem-
poral constraints between events, e.g., identifying if two of 
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them have to be conducted simultaneously or which of them 
starts before. Similarly, [15] extracts safety requirements from 
construction regulatory documents using a CNN-based model 
and represents them in the form of knowledge graph-based 
queries. Anyway, the input language and final goal of both the 
previous papers are different from ours. The Business Process 
Modeling and Notation (BPMN) community is also investi-
gating the possibility of extracting structured workflows from 
unstructured procedural documents in natural languages, such 
as e-mails and chats: the model proposed by [16], e.g., takes 
as input a document (an email or chat containing instructions), 
identifies and clusters main actions, and constructs structured 
and time-ordered business event logs. However, still, a work-
flow is only extracted.

In the range of papers dealing with LTL rules extraction from 
text, we mention [17], whose goal is to order events extracted 
from textual descriptions. While relevant, their pipeline does 
not target automation of procedures, but it simply constructs 
temporal sequences of events, rather than identifying actions, 
LTL constructs, and relations. [5] also deals with the mapping 
of task description to LTL rules; however, the input is a rigidly 
structured signature, rather than natural language.

All the mentioned works differ from ours, both for the 
purpose and thus expected output. Moreover, the language 
constraints they considered are often very strict and sim-
plifying. For these reasons, a direct comparison is not pos-
sible. Nevertheless, Table 1 qualitatively compares these 
related works, summarizing relevant information.

3  Definition of domain language constraints

The input to AUTOMATE pipeline is a domain-specific 
text adhering to some lightweight language constraints. 
Specifically, these constraints define how the following 
concepts are expressed:

• description of robot setup, e.g., instruments’ docking; 
this information is relevant to identify agents of the task;

• action representation, i.e., how operations of the pro-
cedure are expressed in domain language, including 
predicates (verbs) with relevant semantic roles;

• causal and temporal flow of the task, i.e., necessary 
conditions and temporal sequences of actions, as well as 
loops defining continuation of (sequences of) actions.

To preserve the rich expressiveness of highly special-
ized texts and address RQ1, it is important to define them 
with a domain-specific linguistic analysis, which can be 
easily replicated on texts from different domains. In this 
paper, we then consider the publicly available SPKS data-
set [18], containing as-is sentences from different sur-
gical task descriptions, taken from available textbooks 
and manuals. We analyze how the above concepts are 
described in SPKS, and set the most frequent patterns 
as language constraints for input texts to AUTOMATE, 
avoiding all the infrequent expressions.

Our analysis leads to the definition of the following 
domain-specific language constraints:

• the robotic setup is described in the first paragraph; 
specifically, robotic arms are presented with incremen-
tal numbering (e.g. first arm and second arm), while 
docking of instruments to the robotic arms is intro-
duced by verbs as equip, mount and synonyms;

• actions (verbs) are expressed in active or passive form, at 
present or imperative tense. Verbs such as use and syno-
nyms are allowed to introduce the main action; moreover, 
instruments may or may not coincide with agents, i.e., sub-
jects of the actions, since sometimes the surgeon is subject;

• conditions can be only expressed with if/otherwise and in 
case/otherwise statements; temporal sequences can only 
contain then and once connectors; loop iterations can 

Table 1  Summary of related works, compared to ours. AUTOMATE is the only methodology that automatically extracts LTL relations from 
specialized natural text

Paper Domain Input Output

[11] Cooking instructions and maintenance 
manuals

Elementary sentences (subject-verb-object) Sequence of actions

[12] Repair manuals and cooking instructions Elementary sentences (subject-verb-object) List of actions, tools and disassembled 
objects

[13] Cooking instructions Dialogues about procedures Q&A system based on language grounding
[10] Repairing instructions Web posts Classification of procedural content
[14] Chinese construction regulations Chinese natural language Flow chart
[15] Construction safety regulations Natural language Query graphs
[16] Business process modeling E-mails and chats Sequence of actions
[17] General purpose Natural language Sequence of events
[5] Robotic task instructions Structured semantic tuples LTL relations
Ours (Surgical) robotic procedures Procedural natural language LTL relations
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only be expressed with until-repeat constructs. Finally, 
standard logical connectors, such as and, or, are com-
monly used to specify alternative workflows.

As a final remark, the use of synonyms in our texts is limited 
to those statically recognized by the state-of-the-art WordNet 
resources [19]. For the scope of this paper and the considered 
benchmark tasks, this is a reasonable assumption. When more 
complex and domain-specific terminology is needed, e.g., in 
very complex surgical tasks or other more specialized domains, 
a refinement of WordNet is possible, as proposed in [20].

4  Benchmark tasks and texts

Before detailing AUTOMATE, we introduce texts for our 
experimental evaluation, related to the benchmark tasks of 
peg transfer and tissue retraction, following the language 
constraints defined above. This will be useful to illustrate 
the main aspects of our pipeline with examples.

The setup for both tasks consists of three patient-side 
arms of the research version of the da Vinci surgical robot, 
namely the da Vinci Research Kit (dVRK) [21]. Two arms 
are equipped with graspers (first arm and second arm) and 
one holds the camera. The peg transfer (Fig. 1a) is a train-
ing task from the Fundamentals of Laparoscopic Surgery 
(FLS) [22], recognized as a benchmark for performance 
assessment in autonomous robotic surgery [23]. Tissue 
retraction (Fig. 1b) is a benchmark task for evaluating the 
performance of autonomous surgical systems [24, 25].

For both tasks, we consider two different kinds of pro-
cedural texts, according to the agent’s perspective:

• robot as agent, where the instruments or the robotic 
arms are subjects of the sentences.

• surgeon as agent, where the surgeon teleoperates the 
robot, hence he is the subject.

While the second perspective is the dominant one in the 
SPKS dataset, testing also the robot-as-agent case allows 
us to validate the robustness of AUTOMATE to changes in 
semantic roles.

Fig. 1  The setup for the 
benchmark surgical training 
tasks with da Vinci. In the right 
figure, ROI is in red, and APs 
are sewed in the top left

PEG TRANSFER - Robot as agent
The setup has three arms. The first and second arms are equipped 

with grippers, while the third arm has a camera mounted on it for 
vision. 4 rings of different colors (red, green, blue, yellow) are 
placed on a base with 4 colored pegs and 4 grey pegs. First, the 
camera identifies the rings. Then, the first and second arms open 
the grippers. The camera selects one colored ring in the scene. If 
the ring is close to the first arm, the first arm attains it; otherwise, 
the second arm reaches the ring. Then, the gripper grasps the ring. 
Once the ring is on a peg, the arm raises it. Then, if the peg with the 
same ring’s color is close to the arm, the arm reaches it; otherwise, 
it transfers the ring to the other arm. If the gripper is at the peg, the 
ring is placed on the peg. Then, the arm opens the gripper and goes 
to home position. The camera selects a ring to grasp and the proce-
dure repeats until all visible rings are not on the same-colored pegs.

PEG TRANSFER - Surgeon as agent
The setup has three arms. The first and second arms are equipped 

with grippers, while the third arm has a camera mounted on it 
for vision. 4 rings of different colors (red, green, blue, yellow) 
are placed on a base with 4 colored pegs and 4 grey pegs. First, 
the surgeon identifies rings via camera. Once rings are detected, 
the surgeon opens the grippers of first and second arms and 
uses camera to select one colored ring in the scene. If the ring is 
close to the first arm, the surgeon uses the first arm to reach it; 
otherwise, the second arm is used to reach the ring. Once reached, 
the surgeon employs the grippers to grasp the ring. If the ring is 
on a peg, with help of the arm the surgeon raises it. Then, if the 
peg with the same ring color is close to the arm, they use grippers 
to reach it; otherwise, the ring is transferred to the other arm. If 
the gripper is at the peg, the surgeon places the ring on the peg, 
then opens the gripper and moves the arms to home position. The 
surgeon finally uses third arm to identify a ring to grasp and the 
procedure repeats until all rings are not on the same-colored pegs.

4.1  Peg transfer
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1 Similar ontologies exist also for other robotics and automation 
domains, e.g., industry [27].

TISSUE RETRACTION - Robot as agent
The setup consists of three robotic arms. First arm and second arms 

are equipped with grippers, while third arm holds a camera for 
vision. A flap of adipose tissue is attached to surrounding anato-
mies at some points (APs), and covers a region of interest (ROI). 
The camera identifies the APs. First and second arms open the 
grippers. The camera selects a point on the tissue if it is far from 
APs. In case the point is close to first arm, the point is reached 
by first arm; otherwise, the second arm reaches the point. Then, 
the gripper grasps the tissue and raises it up. The arm lifts the 
tissue until a maximum height is reached, or maximum force is 
reached, or the ROI is visible. If the ROI is not visible in case of 
raising, the gripper goes towards the centre of tissue, horizontally. 
If the ROI is still not visible, the arm opens the gripper and goes 
upwards, the third arm selects a different grasping point and the 
procedure is repeated.

TISSUE RETRACTION - Surgeon as agent
The setup consists of three robotic arms. First arm and second arms 

are equipped with grippers, while third arm holds a camera for 
vision. A flap of adipose tissue is attached to surrounding anatomies 
at some points (APs), and covers a region of interest (ROI). The sur-
geon uses camera to identify APs. Then, the surgeon opens the first 
and second arm grippers. The surgeon exploits camera in order to 
select a point on the tissue if it is far from APs. If the point is close 
to first arm, the first arm is used to reach it; otherwise, the surgeon 
uses the second arm to reach the point. Then, the surgeon grasps the 
tissue with thr gripper and raises it. Using the arm, the surgeon lifts 
the tissue until a maximum height is reached, or maximum force 
is reached, or the ROI is visible. If the ROI is not visible in case of 
raising, the surgeon moves the gripper towards the centre of tissue 
horizontally. If the ROI is still not visible, the surgeon opens the 
gripper and moves it upwards, the surgeon uses the camera arm to 
select a different grasping point and the procedure is repeated.

4.2  Tissue retraction

5  AUTOMATE pipeline

This section describes our automatic pipeline to extract LTL 
templates from the benchmark text descriptions. A sche-
matic representation is shown in Fig. 2. AUTOMATE con-
sists of three main steps:

• automatic identification of procedural-only sentences and 
the description of the robotic setup, with the definition of 
the agents of the task (Section 5.1);

• SRL combined with POS tagging and semantic rules to 
automatically detect actions, agents and main semantic 
roles, and temporal-causal flows (Section 5.2);

• automatic translation of procedural semantic information 
to LTL rules (Section 5.3).

Since LTL templates are abstract representations of task 
knowledge, in Section 5.4 we show how to combine them 
with available commonsense and often domain-independent 

knowledge, in order to implement an effective logic program 
for robotic task planning.

5.1  Identifying robotic setup and procedural 
sentences

AUTOMATE first extracts robotic setup information. As 
explained in Section 3, this knowledge is contained in the 
first paragraph of surgical text descriptions. In general, this 
is not a strict requirement, since surgical instruments are 
common to most procedures and they can be retrieved from 
(task-independent) domain ontologies, e.g., [26]1. AUTO-
MATE then searches for equip, mount and synonym verbs 
listed in Section 3, and exploits PropBank-based SRL [28] 
to match these verbs to semantic roles mentioning arms and 
instruments, in order to establish a static link between them 
(see Section 5.2 for more details on SRL). As an example, 
consider the text for the peg transfer task, with the surgeon 
as agent:

The setup has three arms.
The first and second arms are equipped with grippers, 
while the third arm has a camera mounted on it for vision.

Here, SRL recognizes verbs equipped and mounted. 
Moreover, it labels their subjects (the arms) and the clos-
est semantic roles (with grippers and a camera. Then, after 
recognizing grippers, camera and the arms as elements in 
the list of instruments, AUTOMATE establishes a static link 
between the first and second arms and grippers, and between 
thirs arm and the camera. As a consequence, in the pro-
cedural description, they will be used interchangeably and 
recognized as synonyms.

Afterward, AUTOMATE incorporates the methodology 
proposed in [18] to remove non-procedural sentences from 
texts. In particular, a BERT-based classifier [29] pre-trained 
on the SPKS dataset is used to select only procedural sen-
tences. For instance, consider the following sentence from 
the text for tissue retraction with the robot as an agent:

A flap of adipose tissue is attached to surrounding anatomies 
at some points (APs) and covers a region of interest (ROI).

This sentence just describes the anatomical setting and is 
classified as non-procedural, thus it is not processed further.

5.2  Procedural knowledge extraction

For each identified procedural sentence, AUTOMATE 
extracts actions and relevant semantic information, repre-
senting the procedural knowledge needed for LTL template 
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extraction. To this purpose, it still exploits the same Prop-
Bank-based SRL method [28] combined with a standard 
POS-tagger [30], and a specific filtering system for LTL 
connectors based on the language constraints described in 
Section 3. Details are reported in the next sections.

5.2.1  Selecting main action

While we allow multiple verbs to occur in a sentence, only one 
actually can describe an action of the procedure. Given a pro-
cedural sentence, AUTOMATE first uses a state-of-the-art POS 
tagger [30] to identify verbs, hence potential actions. Then, 
from language constraints, it only keeps verbs tagged with 
active, passive, present, or imperative tenses tags, thus exclud-
ing -ing forms, modals, and auxiliaries. Finally, it also excludes 
use verb and its synonyms, because they can only be used to 
introduce the main action according to SPKS-based constraints. 
Though SRL can identify verbs as well, the POS tagger also 
returns the tense, thus making verb filtering straightforward. 
AUTOMATE then excludes all the remaining candidate verbs 
that appear in a span of text labeled as causal or temporal role 
by SRL (see next section) through a list of static rules.

The following excerpt from the text for peg transfer with 
the surgeon as agent exemplifies the process:

If the ring is close to first arm, the surgeon uses first arm 
to reach it; [...]

Three verbs are identified in this sentence, i.e., is, uses, 
and reach. However, only reach is identified as the main 
action by AUTOMATE, while uses is filtered out and is gets 
discarded because it appears in a causal condition (introduced 
by if).

5.2.2  Identifying semantic roles

In order to recognize the agent performing the action, the 
object (e.g., the anatomy) undergoing it and the causal and 
temporal (LTL) task relations, AUTOMATE uses the state-
of-the-art PropBank-based SRL method [28]. This method 
labels relevant semantic roles in a sentence, using tags as Arg0 
for the subject, Arg1 for the object, ArgM-ADV for adverbial 
modifiers, ArgM-DIS for discourse markers and ArgM-TMP 
for temporal markers [31]. AUTOMATE enriches SRL with 
the identification of word connectors specified in Section 3, 

Fig. 2  Overview of the pro-
posed approach: AUTOMATE 
to extract LTL templates + 
semi-automatic translation to 
executable logic programs Identifying robotic setup

Procedural knowledge extration

From Semantic Roles to LTL Templates

Anatomy

Instrument
used

Causal
Roles

Temporal
Roles

Proc.
Text

Main Action

Commonsense and domain specific refinement
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in order to recognize LTL relations. Specifically, to detect 
conditions, AUTOMATE selects roles labeled as ArgM-ADV 
(adverbial modifiers) or ArgM-DIS (discourse Markers) and 
considers only the ones containing the words if/otherwise or 
in case, thus respecting the defined language constraints. For 
detecting temporal relations, AUTOMATE selects spans of 
text labeled as ArgM-TMP and containing words repeat/until 
for loops, or then and once for sequences.

In order to identify tokens playing the role of agents, objects 
or instruments, AUTOMATE uses a different strategy for robot-
as-agent and surgeon-as-agent scenarios. In fact, in the first sce-
nario, the robotic arm or instrument plays the role of subject, and 
thus Arg0 label corresponds to the agent, while the object plays 
the role of a proto-patient[31], thus corresponding to Arg1 label. 
For instance, in the tissue retraction text, the sentence:

The camera selects a point on the tissue if it is far from APs

is labeled as:

[Arg0: The camera] [V: selects] [Arg1: a point on the 
tissue] [ArgM-ADV: if it is far from APs].

Then, given the select action, the agent is the camera 
(Arg0) and the object is the point on the tissue (Arg1).

When the surgeon is the agent, the situation is more com-
plex because the instrument/arm is not the subject (Arg0) 
and may occur in spans of text corresponding to other 
semantic roles. In this case, AUTOMATE relies on the avail-
able list of surgical instruments and searches their mentions 
among the span of texts labeled as Arg-MNR, Arg2, or Arg3 
by SRL. For instance, in the peg transfer scenario, consider 
the following sentence:

First, the surgeon identifies rings via camera

This is annotated by SRL as:

[ArgM-TMP: First], [Arg0: the surgeon] [V: identifies] 
[Arg1: rings] [ArgM-MNR: via camera].

The word camera is a candidate instrument and it is con-
tained in a span of text labeled as ArgM-MNR by SRL. It 
is thus recognized as the instrument for the identify action.

While instrument/arm tokens can be retrieved from the 
available list in the setup description, the use of SRL is still 
necessary. In fact, not all mentions of medical instruments in 
a sentence refer to the actual usage of an instrument to per-
form the main action. For instance, Arg1 labels cannot rep-
resent agents for the same action they are objects of. Then, 
SRL is useful to identify the candidate arguments which can 
actually refer to the instrument, from a semantic perspective. 
For instance, the sentence:

The surgeon uses the first arm to grasp scissors

is annotated by SRL as:

[Arg0: The surgeon] uses the first arm to [V: grasp] 
[Arg1: scissors],

 that is, scissors is correctly recognized as the thing grasped 
(Arg1 of grasp), hence it is discarded and the first arm (which is 
still in the list of possible agents) is marked as the actual agent.

Finally, benchmark texts also use pronouns (e.g., it) to 
avoid word repetitions, as a common practice in natural 
language. AUTOMATE performs the co-reference resolu-
tion by mapping each pronoun to the immediately previous 
semantic role labeled in the same way. While this approach 
is effective in our experiments, some deeper co-reference 
resolution systems, e.g., [32], may be needed in more com-
plex scenarios.

5.3  From semantic roles to LTL templates

The output of SRL highlights relevant semantic infor-
mation about task knowledge, including agents, objects, 
and temporal-causal relations. This information is then 
automatically translated to LTL templates, directly 
mapping temporal-causal roles to logical operators 
with static rules. Specifically, if/otherwise statements 
are mapped to logical implications ( → ), then/once are 
mapped to next ( ◦ ) operator and until/repeat to until 
( U  ) operator.

The following sentences from the texts of our benchmark 
tasks clarify the process:

[SEN-1] In case the point is close to first arm, the point is 
reached by first arm; otherwise, the second arm reaches 
the point.
[SEN-2] Then, the gripper grasps the tissue.
[SEN-3] The arm lifts the tissue until a maximum 
height is reached, or maximum force is reached, or the 
ROI is visible.

The respective output of SRL is:

[ArgM-ADV: In case the point is close to first arm,] 
[Arg1: the point] is [V: reached] [Arg0: by first arm;] 
[ArgM-ADV: otherwise] [Arg0: the second arm] [V: 
reaches] [Arg1: the point.]

[ArgM-TMP: Then,] [Arg0: the gripper] [V: grasps] 
[Arg1: the tissue.]

[Arg0: The arm] [V: lifts] [Arg1: the tissue] [ArgM-TMP: 
until a maximum height is reached, or maximum force is 
reached, or the ROI is visible.]
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After the previous stage, main actions are represented as 
predicates verb(agent, object, other_roles), according to the 
typical formalism of action languages2:

reach(the first arm, the point, ADV: in case the point is 
close to first arm)
reach(the second arm, a point on the tissue, ADV:otherwise)

grasp(first arm, the tissue, TMP:then)

raise(first arm, the tissue, TMP:until a maximum height is 
reached, or maximum force is reached, or the ROI is visible).

Temporal and causal roles are then directly mapped to 
corresponding LTL relations by means of logical operators, 
obtaining LTL templates. For the above example, the output is:

[LTL-1a] reach(first arm, a point on the tissue) ← the 
point is close to first arm
[LTL-1b] reach(second arm, a point on the tissue)  ← ¬ 
the point is close to first arm
[LTL-2] ◦ grasp(first arm, tissue)
[LTL-3] raise(first arm, tissue) U (maximum height is 
reached  ∨ maximum force is reached ∨ the ROI is visible)

where ∨ is the logical disjunction and ¬ is the logical 
negation. The meaning of underlined parts will be clarified 
in the next section.

This section concludes the automatic part of AUTOMATE 
and allows us to reply positively to our research question 
RQ1. In fact, in Section 3 we have started from highly special-
ized and expressive surgical texts and defined reasonable and 
loose language constraints based on a domain-specific sys-
tematic analysis. This has allowed us to generate texts in Sec-
tion 4, which preserve most of the expressiveness of natural 
language, e.g., different verb tenses, the use of synonyms and 
pronouns, active and passive forms, and richness of semantic 
roles. AUTOMATE is then able to retrieve LTL templates 
that correctly express the causal and temporal flow of actions, 
enucleating relevant procedural information from text.

5.4  From LTL templates to an executable logic 
program

LTL templates extracted by AUTOMATE must be translated 
to the syntax of a specific logic program, in order to be effec-
tively used for robotic task planning.

A logic program (based on an action language as, e.g., 
PDDL) represents a domain of interest with a signa-
ture (alphabet), defining main variables and predicates of 

variables (atoms), and a set of axioms encoding causal and 
temporal relations between atoms. As an example, consider 
the sentence from the above section:

The first arm raises the tissue until maximum height is 
reached [...]

Atoms are used to represent the action predicate raise(first 
arm, tissue) and the (task-independent) concept maximum 
height is reached, e.g., as reached(max_height).

Atoms for actions can be automatically retrieved from the 
final step of AUTOMATE (see previous section), where pred-
icates in the form verb(agent, object) are automatically built. 
The only further required step is to map instances of agents 
to a more general Agent variable, i.e., lifting raise(first 
arm, tissue) to raise(Agent, tissue), in order 
to build generic LTL rules. This step is performed automati-
cally, by mapping all instrument occurrences in AUTO-
MATE predicates to the unique variable name.

The atom reached(max_height), as well as parts 
underlined in statements LTL1-a to LTL-3, represent environ-
mental concepts which are less trivial to represent, hence still 
require handcrafting from the programmer. However, typically 
these concepts are not task-specific, but they represent at most 
domain-specific commonsense information. For several sce-
narios of interest, ontologies encoding commonsense concepts 
are available, e.g., [26] for surgery, [33] for rehabilitation and 
[34] for robotics and automation. Thus, it is possible to reuse 
and slightly extend already existing ontologies [35] to define 
missing atoms in LTL rules. For instance, reached(max_
height) atom in the previous example can be encoded 
exploiting the already available PositionPoint class in [34].

Finally, as mentioned in the previous section, the map-
ping of LTL operators to their specific logic programming 
encoding is performed automatically. The above sentence 
can then be translated to a statement in logic programming:

This section replies to research question RQ2. AUTO-
MATE retrieves LTL templates that have some missing infor-
mation, related to commonsense knowledge about the domain 
of interest. Thus, in order to bridge the gap with actual robotic 
implementation, it is necessary to retrieve such knowledge 
from existing domain-specific ontologies, or slightly extend 
them in case of very specialized and unconventional scenarios.

6  Experimental evaluation

In this section, we evaluate the quality and utility of the 
procedural knowledge extracted from texts, addressing RQ3. 
In more detail, we verify that the extracted task knowledge 
is correct and general enough to compute suitable plans for 

(1)lif t(arm, tissue) U reached(max_force)

2 In the third sentence, notice that lift and raise are automatically 
identified as synonyms by WordNet’s synsets, and mapped to a single 
action (arbitrarily chosen as raise).
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our benchmark robotic tasks, given different initial environ-
mental contexts. This requires:

1. implementation of LTL templates into a specific logic 
programming language;

2. implementation of low-level routines for robotic motion 
planning, control, and perception;

3. a simulated environment to replicate the benchmark 
tasks and the robot.

To address the first requirement, we implement LTL 
templates in the formalism of Answer Set Programming 
(ASP), a state-of-the-art logic programming paradigm for 
autonomous agents [36]. We adopt Clingo 5 [37] software 
tool for ASP representation and solving (i.e., plan compu-
tation). For the second and third requirements, we use the 
framework for integrated planning and execution of surgical 
robotic tasks proposed in [25, 38]. This includes a simulated 
version of the dVRK, the calibrated [39] surgical camera 
for perception, and the realistic emulation of peg transfer 
and tissue retraction scenarios. More specifically, we use a 
CoppeliaSim3 environment for peg transfer, which involves 
rigid manipulation; we then use finite-element simulation 
in Sofa4 for tissue retraction.

We evaluate the quality of the extracted task specifica-
tions in terms of planning success and planning computa-
tional performance.

The planning success measures the percentage of suc-
cessful generation of task plans in a set of 100 random envi-
ronmental contexts, corresponding to different workflows of 
execution, to assess the generality of extracted task knowl-
edge. Contexts differ in the initial location and number of 
rings for peg transfer, and the locations of ROI and APs for 
tissue retraction.

The computational performance is calculated as the time 
required by Clingo to compute a plan, given some initial 
environmental context. We evaluate this metric as the com-
plexity of the planning problem increases, as explained in 
the following sections.

For both metrics, we compare the performance of the 
automatically extracted LTL templates5 against the ASP 
task description written by an expert programmer with full 
knowledge about the domains of interest. There are dif-
ferences between hand-written ASP programs and LTL 
templates extracted from procedural texts. In fact, hand-
written programs typically encode task knowledge as pre-
conditions and effects of actions, i.e., axioms connecting 

environmental features to actions, as in standard action 
languages such as PDDL [2]. Instead, procedural texts 
typically contain information about the causal/temporal 
flow of actions. For instance, with reference to the reach 
and grasp actions reported in sentences SEN-1 to SEN-2 
in Section 5.3, their mutual causal and temporal relation 
is expressed in classical ASP in terms of pre- and post-
conditions as follows:

where :- is the logical implication ( ← ), t is a variable 
representing a discrete time step, and at(Agent, tissue, t) 
is an environmental feature representing the location of 
an arm with respect to an object, as an effect of reach 
action. We make ASP encodings available in the linked 
repository.

All experiments are performed in a simulated environ-
ment, using a PC with a 2.6 GHz Intel Core i7-6700HQ CPU 
(4 cores/8 threads) and 16 GB RAM.

6.1  Peg transfer

Below, results for the peg transfer domain are presented.

6.1.1  Planning success

Domain variables which influence the workflow of execu-
tion, hence are relevant for assessing planning success, are:

• the number of rings, affecting the number of required 
actions to complete the task successfully;

• initial placement of the rings on grey pegs, which 
requires extraction before bringing them to the correct 
pegs;

• the relative positions of the rings with respect to the 
robotic arms, affecting reachability conditions and thus 
possibly requiring transfer between arms before place-
ment on pegs.

Hence, we generate 100 random scenarios as follows:

• 19 scenarios present only 1 ring, 30 scenarios 2 rings, 22 
scenarios 3 rings, and 29 scenarios 4 rings6

• 84/100 scenarios present at least one ring on a grey peg, 
so they require extraction;

• 80/100 scenarios require transferring of rings between 
arms.

(2)
at(Agent, tissue, t) ∶ − reach(Agent, tissue, t − 1) .

grasp(Agent, tissue, t) ∶ − at(Agent, tissue, t) .

3 https:// www. coppe liaro botics. com/
4 https:// www. sofa- frame work. org/
5 AUTOMATE pipeline is able to extract the same LTL relations 
from surgeon-as-agent and robot-as-agent texts.

6 The maximum number of rings in the scene is set to 4 as of FLS 
specifications [22].

https://www.coppeliarobotics.com/
https://www.sofa-framework.org/
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The task is considered successful when all rings 
are placed on the same-colored pegs. In all scenarios, 
100% success rate is achieved by both LTL templates 
extracted by AUTOMATE and the hand-written ASP 
encoding.

6.1.2  Computational performance

The complexity of the planning problem depends on the 
number of rings and actions to be executed (e.g., whether 
the rings require extraction or not).

In Fig. 3a, we show the ratio between the planning time 
with the ASP program extracted from the text and the expert-
written one, in the 100 random scenarios considered above 
(sorted by plan length). The ratio decreases significantly as 
the plan size increases, meaning that LTL templates encode 
task knowledge more efficiently, enhancing scalability to 
more complex task instances.

This is even more evident in Figure 3b, showing the 
planning time for both ASP programs against the plan 

length. As the plan length increases, the computational 
performance of the ASP program extracted from text 
scales linearly with the length of the plan, thus signifi-
cantly better than the hand-written program with quadratic 
progression. This happens because of the different ASP 
representations, with the classical hand-written ASP for-
malization having more axioms as explained at the begin-
ning of Section 6, which require more computational effort 
from Clingo.

Notice that the two ASP programs generate plans with 
different lengths, though under the same initial configura-
tions. This depends on a slightly different action representa-
tion. For instance, in the text description, there are actions 
as selecting a target ring with camera which are captured 
by SRL and then converted to LTL/ASP predicates. How-
ever, such actions are not properly moving actions, so they 
do not affect the workflow of execution. Hence they are 
not encoded by the expert writing the ASP program from 
scratch.

6.2  Tissue retraction

For tissue retraction, we assume that the tissue may be 
grasped from a discrete set of points, obtained as follows:

1. the rectangular tissue flap is discretized as a N × N grid;
2. candidate grasping points are centroids of cells in the 

grid.

At the ASP level, a variable for the candidate grasping 
point is added, instead of the generic tissue, with a unique 
identifier for each point in {1, ...,N2} . Grasping points are 
chosen depending on the distance from APs.

6.2.1  Planning success

Variables that affect the workflow of execution are:

• the initial position of the ROI, since grasping and pulling 
the tissue may not be sufficient to expose it and horizon-
tal folding may be needed;

• a different robotic arm may be needed to grasp the tis-
sue, depending on the reachability of the chosen grasping 
point.

Hence, we generate random contexts with fixed N = 5 
grid discretization, specifically 35/100 requiring re-planning 
and 67/100 requiring usage of the first arm. The task is con-
sidered to be successfully executed if the final ROI exposure 
percentage is ≥ 70% . When the hand-written ASP program 
is implemented for task planning, the planning success rate 
is 98%, against 94% with the ASP program extracted from 
text. However, the mean and standard deviation of ROI 

Fig. 3  On top, the ratio between planning times with ASP program 
from text and hand-written ASP program, for 100 random initial con-
figurations sorted by plan length. In the bottom, mean and standard 
planning times for the two ASP programs vs. plan length (mean ± std 
deviation are reported for plans with the same size). In the box, focus 
on the results for LTL templates extracted by AUTOMATE (same 
units as the main plot) is shown
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exposure is higher with LTL templates ( 97.47% ± 6.90% 
vs. 92.26% ± 9.53% ). Thus, overall planning success is not 
significantly different.

6.2.2  Computational performance

The planning time with Clingo depends mainly on the num-
ber of candidate grasping points, i.e., the grid discretization 
parameter N [24]. Hence, we consider different N × N grid 
discretizations of the tissue flap, with N ∈ {5, ..., 15} , and 
randomize 20 different locations of APs and ROI for each 
of them.

In Fig. 4a we show the ratio between planning times 
obtained with the ASP program extracted from the text and 
the hand-written one. The ratio is always < 1 , meaning that 
ASP axioms extracted from the text are slightly more effi-
cient than hand-written ones. The ratio does not significantly 
vary for different tissue discretizations, while the absolute 
discrepancy between planning times for the two ASP pro-
grams increases (Fig. 4b). Thus, extracted LTL templates are 
still slightly more efficient for the ASP solver.

6.3  Evaluation considerations

Thanks to the above results, we can positively answer research 
question RQ3: combining LTL templates extracted from 
AUTOMATE with minimal domain-dependent commonsense 
knowledge, it is possible to implement more compact com-
putationally efficient logic programs representing task knowl-
edge, preserving the rate of successful planning instances.

7  Conclusion

In this paper, we have presented AUTOMATE, an automatic 
pipeline for procedural robotic task knowledge extraction from 
specialized texts. Our methodology tackles the complex prob-
lem of identifying LTL templates in expert-written descrip-
tions of tasks, combining automatic procedural sentence clas-
sification, POS tagging, SRL, and information filtering rules. 
Unlike state-of-the-art approaches, AUTOMATE does not 
rely on oversimplifying language constraints and assumptions. 
Instead, we consider the very challenging surgical robotic 
domain, and define the required expressiveness of input texts, 
based on the analysis of surgical language variability in a pub-
licly available dataset of procedural annotations and manuals. 
Moreover, AUTOMATE is robust concerning several aspects 
of natural language variability, never fully addressed in previ-
ous research. First, it can identify all main LTL operators, e.g., 
◦ and U , as well as standard logical connectors. Secondly, it 
can deal with different verbal configurations (i.e., active and 
passive forms and modal verbs) and perspectives in writing 
(i.e., texts written from the point of view of the human or 
the robot). Finally, we empirically show that to bridge the 
gap between procedural texts and effective implementation of 
extracted knowledge, thus obtaining logic programs for actual 
robotic task automation, low-level commonsense knowledge 
is required, that is often a-priori coded or contained in domain 
ontologies. In the context of two simulated benchmark surgi-
cal training tasks, we have shown that automatically extracted 
task knowledge is sufficient to successfully complete multiple 
random task instances, outperforming logic programs written 
by expert programmers in terms of computational efficiency. 
AUTOMATE also offers a unique advantage for robotic pro-
grammers, since it provides them with clear LTL specifica-
tions about a task and domain of interest, which only requires 
to be translated into a specific logic program. This is funda-
mental, especially in complex scenarios, where programmers 
have limited domain knowledge. Moreover, AUTOMATE can 
be easily extended to other domains of interest, after defining 
suitable language constraints accordingly.

In conclusion, we can positively answer RQ1: extracting 
LTL templates from specialized texts is feasible, without 
relying on oversimplifying language restrictions, but only 
on a systematic linguistic analysis of the domain. For RQ2, 

Fig. 4  On top, the ratio (mean ± standard deviation) between plan-
ning times with ASP program from text and hand-written ASP pro-
gram for tissue retraction task, for different size N of grid discretiza-
tion. In the bottom, mean and standard planning times for the two 
ASP programs vs. grid size
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we state that translating LTL templates to an executable 
logic program is possible, under the assumption that mini-
mal task-independent commonsense knowledge about the 
domain is available, e.g., from existing domain ontologies. 
Finally, results show that the LTL program extracted from 
text outperforms a handcrafted one in terms of computa-
tional time while guaranteeing the same success rate, thus 
positively answering RQ3. This paper opens several future 
work directions. One fundamental consideration is about 
the completeness of task knowledge available in specialized 
texts. In fact, especially in complex scenarios such as surgi-
cal robotics, only nominal procedures, and the most com-
mon variants are typically described. Thus, it is important 
to integrate extracted LTL templates, with task knowledge 
inferred from available datasets of execution, e.g., employ-
ing unsupervised action segmentation [40] and inductive 
learning to discover task specifications [41]. In this way, it 
is possible to guarantee that the autonomous system can deal 
with the highest number of unexpected events. Moreover, 
to apply our pipeline to more challenging surgical proce-
dures, we will adopt NLP domain adaptation techniques, 
following recent research trends [42, 43] to deal with highly 
technical expressions in texts. Finally, we plan to validate 
AUTOMATE in different domains and to bring extracted 
logic programs on a real robotic setup, to integrate task plan-
ning with the challenges of perception and motion control.
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