
Vol.:(0123456789)1 3

Applied Intelligence
https://doi.org/10.1007/s10489-023-04882-0

Mapping natural language procedures descriptions to linear temporal
logic templates: an application in the surgical robotic domain

Marco Bombieri1 · Daniele Meli1 · Diego Dall’Alba1 · Marco Rospocher1 · Paolo Fiorini1

Accepted: 10 July 2023
© The Author(s) 2023

Abstract
Natural language annotations and manuals can provide useful procedural information and relations for the highly specialized
scenario of autonomous robotic task planning. In this paper, we propose and publicly release AUTOMATE, a pipeline for
automatic task knowledge extraction from expert-written domain texts. AUTOMATE integrates semantic sentence classifi-
cation, semantic role labeling, and identification of procedural connectors, in order to extract templates of Linear Temporal
Logic (LTL) relations that can be directly implemented in any sufficiently expressive logic programming formalism for
autonomous reasoning, assuming some low-level commonsense and domain-independent knowledge is available. This is
the first work that bridges natural language descriptions of complex LTL relations and the automation of full robotic tasks.
Unlike most recent similar works that assume strict language constraints in substantially simplified domains, we test our
pipeline on texts that reflect the expressiveness of natural language used in available textbooks and manuals. In fact, we test
AUTOMATE in the surgical robotic scenario, defining realistic language constraints based on a publicly available dataset.
In the context of two benchmark training tasks with texts constrained as above, we show that automatically extracted LTL
templates, after translation to a suitable logic programming paradigm, achieve comparable planning success in reduced time,
with respect to logic programs written by expert programmers.

Keywords Natural language processing · Autonomous planning · Linear temporal logic · Surgical robotics

1 Introduction

Robots are becoming increasingly used in complex domains
involving interaction with humans, such as surgery, manu-
facturing, and education. In these domains, safe and trust-
able autonomy is a key objective [1]. This can be achieved
by adopting a formal representation of task knowledge, e.g.,
with the Planning Domain Description Language (PDDL)
[2] and logic programming [3] implementations, defining
task resources and specifications (preconditions and effects
of actions). However, in complex domains, task knowledge is
not easily available to robotic programmers. Recent research
articles [4, 5] have shown that Natural Language Processing

(NLP) for automatic extraction of task knowledge from texts
is a promising approach to retrieving relevant procedural
information about a given domain, thus mitigating the effort
for robot programmers. However, existing NLP techniques
often make simplifying assumptions on the semantic and
syntactic richness of the input texts and the domain itself,
thus struggling in realistic robotic scenarios where complex
temporal and logical relations are involved to describe the
flow of actions and events.

In this paper, we propose AUTOMATE (lAngUage To
lOgic teMplATEs), a pipeline for the automatic extrac-
tion of procedural Linear Temporal Logic (LTL) [6]
templates from texts. Our methodology combines auto-
matic detection of procedural sentences, Part-Of-Speech
(POS) tagging combined with Semantic Role Labeling
(SRL) to extract relevant semantic information about task
knowledge, and recognition of LTL connectors accord-
ing to domain-dependent language constraints. We pre-
sent and validate our methodology in the complex yet
unexplored scenario of surgical robotics, which involves
highly specialized procedural descriptions. We select
this domain because, in the surgical context, autonomy

These authors contributed equally to this work.

 * Marco Bombieri
 marco.bombieri_01@univr.it

 * Daniele Meli
 daniele.meli@univr.it

1 University of Verona, Verona, Italy

http://orcid.org/0000-0002-8607-8495
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04882-0&domain=pdf

 M. Bombieri et al.

1 3

has the potential to reduce patients’ recovery time, usage
and cost of hospital resources, and surgeon’s fatigue [7].
This paper specifically investigates the following research
questions:

[RQ1] Is the automatic translation of procedural tex-
tual descriptions to LTL templates a feasible task with-
out relying on too strict and unrealistic language con-
straints?
[RQ2] If the answer to RQ1 is positive, can the obtained
templates be automatically translated to logic programs
for direct implementation in an autonomous robotic archi-
tecture?
[RQ3] Is there any advantage, e.g., in terms of perfor-
mance, in using task knowledge extracted from texts
rather than expert-written logic programs?

We then make the following contributions to the state of
the art:

• in the exemplary surgical context, we show how to per-
form a systematic linguistic and stylistic analysis of
domain-specialized texts, to define realistic language
constraints (about, e.g., verbal forms and tenses, LTL
connectors, and semantic procedural structures) and pre-
serve domain expressiveness;

• we propose AUTOMATE for automatic generation of
LTL templates directly from realistic natural language
descriptions, and make it publicly available at https://
gitlab. com/ altai rLab/ AUTOM ATE;

• we show how to combine LTL templates with common-
sense and domain-independent knowledge to implement
a robotic-executable logic program and bridge the gap
between NLP and real robotic applications;

• in the context of two benchmark tasks for surgical robot-
ics, namely, peg transfer and tissue retraction, we write
texts following the constraints defined before, and we
show that extracted LTL templates are as successful as
expert-written logic programs, with the former often
being more computationally efficient.

The paper is organized as follows: Section 2 revises the
state of the art in procedural knowledge extraction from text,
highlighting recent solutions for extracting LTL relations.
Section 3 shows how to define domain-specific language
constraints, particularly for surgical robotics. Based on them,
texts for our benchmark scenarios are presented in Section 4,
and Section 5.2 details AUTOMATE. Section 6 evaluates
the planning performance of extracted LTL templates against
expert-written logic programs. Finally, Section 6.1.1 sum-
marizes the responses to our research questions, highlighting
the benefits and limitations of AUTOMATE and possible
future research directions.

2 Related works

The focus of this paper is on machine understanding of pro-
cedural task descriptions expressed in natural language. As
analyzed in [8], this problem is becoming relevant in many
different domains and for many purposes, such as question-
answering, intent inference (i.e., prediction of the goal of a
sequence of actions using commonsense reasoning), task-
based search, activity recognition, and language ground-
ing (e.g., alignment of natural language text to videos or
images). Recent research has also explored retrieval of LTL
relations from texts, as reviewed in [9]. In this section, we
analyze the most recent works focusing on this latter aspect,
comparing AUTOMATE to them in terms of required input,
output, the domain of application, and limitations.

Machine understanding of procedural task descrip-
tions is relevant to domains involving repair instructions
[10–12], technical support documentation [11], cooking
recipes [11, 13], construction procedures [14, 15], and
business process modeling [16]. Only a few recent papers
have investigated the problem of mapping procedural
knowledge extracted from text to formal logic [5, 17].

In [11], sentences mentioning actions in cooking recipes
and maintenance manuals are detected with a convolutional
neural network fed with word embeddings. The goal of the
authors is to build a procedural workflow, thus recognizing
actions, generic roles and objects, parts of the text where a
procedural block begins or ends, and clues about an action
that is optional or can be executed concurrently with another
one. This method thus cannot extract LTL templates (the out-
put is a list of sentences or classified tokens), nor recognize
the precise semantics of an identified object (for example the
mention of an instrument). [12] deals with procedural sen-
tence understanding in repair instructions, intending to extract
verbs, tools, and disassembled parts by using BERT-based
methods. Its purpose is however that of recognizing proce-
dural actors in texts and not that of extracting LTL relation-
ships or an executable workflow. Finally, also [13] deals with
procedural understanding in cooking recipes by releasing an
annotated dataset; however, its main goal is to ground dia-
logues in which agents, given a recipe document, guide the
user to cook a dish, to provide a framework for understand-
ing users’ questions and generating automatic responses. In
[10], the authors investigate different combinations of features
(e.g., bags of words, post length, bullet lists) and machine
learning methods (e.g., neural networks and random forests)
to detect posts from automotive web communities containing
descriptions of repair instructions. However, the final goal is
not to extract LTL specifications or procedural workflows.
In [14], the authors, with a named entity recognition system
combined with a relations extraction method, target construc-
tion regulatory Chinese documents, to extract procedural tem-
poral constraints between events, e.g., identifying if two of

https://gitlab.com/altairLab/AUTOMATE
https://gitlab.com/altairLab/AUTOMATE

Mapping natural language procedures descriptions to linear temporal logic templates

1 3

them have to be conducted simultaneously or which of them
starts before. Similarly, [15] extracts safety requirements from
construction regulatory documents using a CNN-based model
and represents them in the form of knowledge graph-based
queries. Anyway, the input language and final goal of both the
previous papers are different from ours. The Business Process
Modeling and Notation (BPMN) community is also investi-
gating the possibility of extracting structured workflows from
unstructured procedural documents in natural languages, such
as e-mails and chats: the model proposed by [16], e.g., takes
as input a document (an email or chat containing instructions),
identifies and clusters main actions, and constructs structured
and time-ordered business event logs. However, still, a work-
flow is only extracted.

In the range of papers dealing with LTL rules extraction from
text, we mention [17], whose goal is to order events extracted
from textual descriptions. While relevant, their pipeline does
not target automation of procedures, but it simply constructs
temporal sequences of events, rather than identifying actions,
LTL constructs, and relations. [5] also deals with the mapping
of task description to LTL rules; however, the input is a rigidly
structured signature, rather than natural language.

All the mentioned works differ from ours, both for the
purpose and thus expected output. Moreover, the language
constraints they considered are often very strict and sim-
plifying. For these reasons, a direct comparison is not pos-
sible. Nevertheless, Table 1 qualitatively compares these
related works, summarizing relevant information.

3 Definition of domain language constraints

The input to AUTOMATE pipeline is a domain-specific
text adhering to some lightweight language constraints.
Specifically, these constraints define how the following
concepts are expressed:

• description of robot setup, e.g., instruments’ docking;
this information is relevant to identify agents of the task;

• action representation, i.e., how operations of the pro-
cedure are expressed in domain language, including
predicates (verbs) with relevant semantic roles;

• causal and temporal flow of the task, i.e., necessary
conditions and temporal sequences of actions, as well as
loops defining continuation of (sequences of) actions.

To preserve the rich expressiveness of highly special-
ized texts and address RQ1, it is important to define them
with a domain-specific linguistic analysis, which can be
easily replicated on texts from different domains. In this
paper, we then consider the publicly available SPKS data-
set [18], containing as-is sentences from different sur-
gical task descriptions, taken from available textbooks
and manuals. We analyze how the above concepts are
described in SPKS, and set the most frequent patterns
as language constraints for input texts to AUTOMATE,
avoiding all the infrequent expressions.

Our analysis leads to the definition of the following
domain-specific language constraints:

• the robotic setup is described in the first paragraph;
specifically, robotic arms are presented with incremen-
tal numbering (e.g. first arm and second arm), while
docking of instruments to the robotic arms is intro-
duced by verbs as equip, mount and synonyms;

• actions (verbs) are expressed in active or passive form, at
present or imperative tense. Verbs such as use and syno-
nyms are allowed to introduce the main action; moreover,
instruments may or may not coincide with agents, i.e., sub-
jects of the actions, since sometimes the surgeon is subject;

• conditions can be only expressed with if/otherwise and in
case/otherwise statements; temporal sequences can only
contain then and once connectors; loop iterations can

Table 1 Summary of related works, compared to ours. AUTOMATE is the only methodology that automatically extracts LTL relations from
specialized natural text

Paper Domain Input Output

[11] Cooking instructions and maintenance
manuals

Elementary sentences (subject-verb-object) Sequence of actions

[12] Repair manuals and cooking instructions Elementary sentences (subject-verb-object) List of actions, tools and disassembled
objects

[13] Cooking instructions Dialogues about procedures Q&A system based on language grounding
[10] Repairing instructions Web posts Classification of procedural content
[14] Chinese construction regulations Chinese natural language Flow chart
[15] Construction safety regulations Natural language Query graphs
[16] Business process modeling E-mails and chats Sequence of actions
[17] General purpose Natural language Sequence of events
[5] Robotic task instructions Structured semantic tuples LTL relations
Ours (Surgical) robotic procedures Procedural natural language LTL relations

 M. Bombieri et al.

1 3

only be expressed with until-repeat constructs. Finally,
standard logical connectors, such as and, or, are com-
monly used to specify alternative workflows.

As a final remark, the use of synonyms in our texts is limited
to those statically recognized by the state-of-the-art WordNet
resources [19]. For the scope of this paper and the considered
benchmark tasks, this is a reasonable assumption. When more
complex and domain-specific terminology is needed, e.g., in
very complex surgical tasks or other more specialized domains,
a refinement of WordNet is possible, as proposed in [20].

4 Benchmark tasks and texts

Before detailing AUTOMATE, we introduce texts for our
experimental evaluation, related to the benchmark tasks of
peg transfer and tissue retraction, following the language
constraints defined above. This will be useful to illustrate
the main aspects of our pipeline with examples.

The setup for both tasks consists of three patient-side
arms of the research version of the da Vinci surgical robot,
namely the da Vinci Research Kit (dVRK) [21]. Two arms
are equipped with graspers (first arm and second arm) and
one holds the camera. The peg transfer (Fig. 1a) is a train-
ing task from the Fundamentals of Laparoscopic Surgery
(FLS) [22], recognized as a benchmark for performance
assessment in autonomous robotic surgery [23]. Tissue
retraction (Fig. 1b) is a benchmark task for evaluating the
performance of autonomous surgical systems [24, 25].

For both tasks, we consider two different kinds of pro-
cedural texts, according to the agent’s perspective:

• robot as agent, where the instruments or the robotic
arms are subjects of the sentences.

• surgeon as agent, where the surgeon teleoperates the
robot, hence he is the subject.

While the second perspective is the dominant one in the
SPKS dataset, testing also the robot-as-agent case allows
us to validate the robustness of AUTOMATE to changes in
semantic roles.

Fig. 1 The setup for the
benchmark surgical training
tasks with da Vinci. In the right
figure, ROI is in red, and APs
are sewed in the top left

PEG TRANSFER - Robot as agent
The setup has three arms. The first and second arms are equipped

with grippers, while the third arm has a camera mounted on it for
vision. 4 rings of different colors (red, green, blue, yellow) are
placed on a base with 4 colored pegs and 4 grey pegs. First, the
camera identifies the rings. Then, the first and second arms open
the grippers. The camera selects one colored ring in the scene. If
the ring is close to the first arm, the first arm attains it; otherwise,
the second arm reaches the ring. Then, the gripper grasps the ring.
Once the ring is on a peg, the arm raises it. Then, if the peg with the
same ring’s color is close to the arm, the arm reaches it; otherwise,
it transfers the ring to the other arm. If the gripper is at the peg, the
ring is placed on the peg. Then, the arm opens the gripper and goes
to home position. The camera selects a ring to grasp and the proce-
dure repeats until all visible rings are not on the same-colored pegs.

PEG TRANSFER - Surgeon as agent
The setup has three arms. The first and second arms are equipped

with grippers, while the third arm has a camera mounted on it
for vision. 4 rings of different colors (red, green, blue, yellow)
are placed on a base with 4 colored pegs and 4 grey pegs. First,
the surgeon identifies rings via camera. Once rings are detected,
the surgeon opens the grippers of first and second arms and
uses camera to select one colored ring in the scene. If the ring is
close to the first arm, the surgeon uses the first arm to reach it;
otherwise, the second arm is used to reach the ring. Once reached,
the surgeon employs the grippers to grasp the ring. If the ring is
on a peg, with help of the arm the surgeon raises it. Then, if the
peg with the same ring color is close to the arm, they use grippers
to reach it; otherwise, the ring is transferred to the other arm. If
the gripper is at the peg, the surgeon places the ring on the peg,
then opens the gripper and moves the arms to home position. The
surgeon finally uses third arm to identify a ring to grasp and the
procedure repeats until all rings are not on the same-colored pegs.

4.1 Peg transfer

Mapping natural language procedures descriptions to linear temporal logic templates

1 3

1 Similar ontologies exist also for other robotics and automation
domains, e.g., industry [27].

TISSUE RETRACTION - Robot as agent
The setup consists of three robotic arms. First arm and second arms

are equipped with grippers, while third arm holds a camera for
vision. A flap of adipose tissue is attached to surrounding anato-
mies at some points (APs), and covers a region of interest (ROI).
The camera identifies the APs. First and second arms open the
grippers. The camera selects a point on the tissue if it is far from
APs. In case the point is close to first arm, the point is reached
by first arm; otherwise, the second arm reaches the point. Then,
the gripper grasps the tissue and raises it up. The arm lifts the
tissue until a maximum height is reached, or maximum force is
reached, or the ROI is visible. If the ROI is not visible in case of
raising, the gripper goes towards the centre of tissue, horizontally.
If the ROI is still not visible, the arm opens the gripper and goes
upwards, the third arm selects a different grasping point and the
procedure is repeated.

TISSUE RETRACTION - Surgeon as agent
The setup consists of three robotic arms. First arm and second arms

are equipped with grippers, while third arm holds a camera for
vision. A flap of adipose tissue is attached to surrounding anatomies
at some points (APs), and covers a region of interest (ROI). The sur-
geon uses camera to identify APs. Then, the surgeon opens the first
and second arm grippers. The surgeon exploits camera in order to
select a point on the tissue if it is far from APs. If the point is close
to first arm, the first arm is used to reach it; otherwise, the surgeon
uses the second arm to reach the point. Then, the surgeon grasps the
tissue with thr gripper and raises it. Using the arm, the surgeon lifts
the tissue until a maximum height is reached, or maximum force
is reached, or the ROI is visible. If the ROI is not visible in case of
raising, the surgeon moves the gripper towards the centre of tissue
horizontally. If the ROI is still not visible, the surgeon opens the
gripper and moves it upwards, the surgeon uses the camera arm to
select a different grasping point and the procedure is repeated.

4.2 Tissue retraction

5 AUTOMATE pipeline

This section describes our automatic pipeline to extract LTL
templates from the benchmark text descriptions. A sche-
matic representation is shown in Fig. 2. AUTOMATE con-
sists of three main steps:

• automatic identification of procedural-only sentences and
the description of the robotic setup, with the definition of
the agents of the task (Section 5.1);

• SRL combined with POS tagging and semantic rules to
automatically detect actions, agents and main semantic
roles, and temporal-causal flows (Section 5.2);

• automatic translation of procedural semantic information
to LTL rules (Section 5.3).

Since LTL templates are abstract representations of task
knowledge, in Section 5.4 we show how to combine them
with available commonsense and often domain-independent

knowledge, in order to implement an effective logic program
for robotic task planning.

5.1 Identifying robotic setup and procedural
sentences

AUTOMATE first extracts robotic setup information. As
explained in Section 3, this knowledge is contained in the
first paragraph of surgical text descriptions. In general, this
is not a strict requirement, since surgical instruments are
common to most procedures and they can be retrieved from
(task-independent) domain ontologies, e.g., [26]1. AUTO-
MATE then searches for equip, mount and synonym verbs
listed in Section 3, and exploits PropBank-based SRL [28]
to match these verbs to semantic roles mentioning arms and
instruments, in order to establish a static link between them
(see Section 5.2 for more details on SRL). As an example,
consider the text for the peg transfer task, with the surgeon
as agent:

The setup has three arms.
The first and second arms are equipped with grippers,
while the third arm has a camera mounted on it for vision.

Here, SRL recognizes verbs equipped and mounted.
Moreover, it labels their subjects (the arms) and the clos-
est semantic roles (with grippers and a camera. Then, after
recognizing grippers, camera and the arms as elements in
the list of instruments, AUTOMATE establishes a static link
between the first and second arms and grippers, and between
thirs arm and the camera. As a consequence, in the pro-
cedural description, they will be used interchangeably and
recognized as synonyms.

Afterward, AUTOMATE incorporates the methodology
proposed in [18] to remove non-procedural sentences from
texts. In particular, a BERT-based classifier [29] pre-trained
on the SPKS dataset is used to select only procedural sen-
tences. For instance, consider the following sentence from
the text for tissue retraction with the robot as an agent:

A flap of adipose tissue is attached to surrounding anatomies
at some points (APs) and covers a region of interest (ROI).

This sentence just describes the anatomical setting and is
classified as non-procedural, thus it is not processed further.

5.2 Procedural knowledge extraction

For each identified procedural sentence, AUTOMATE
extracts actions and relevant semantic information, repre-
senting the procedural knowledge needed for LTL template

 M. Bombieri et al.

1 3

extraction. To this purpose, it still exploits the same Prop-
Bank-based SRL method [28] combined with a standard
POS-tagger [30], and a specific filtering system for LTL
connectors based on the language constraints described in
Section 3. Details are reported in the next sections.

5.2.1 Selecting main action

While we allow multiple verbs to occur in a sentence, only one
actually can describe an action of the procedure. Given a pro-
cedural sentence, AUTOMATE first uses a state-of-the-art POS
tagger [30] to identify verbs, hence potential actions. Then,
from language constraints, it only keeps verbs tagged with
active, passive, present, or imperative tenses tags, thus exclud-
ing -ing forms, modals, and auxiliaries. Finally, it also excludes
use verb and its synonyms, because they can only be used to
introduce the main action according to SPKS-based constraints.
Though SRL can identify verbs as well, the POS tagger also
returns the tense, thus making verb filtering straightforward.
AUTOMATE then excludes all the remaining candidate verbs
that appear in a span of text labeled as causal or temporal role
by SRL (see next section) through a list of static rules.

The following excerpt from the text for peg transfer with
the surgeon as agent exemplifies the process:

If the ring is close to first arm, the surgeon uses first arm
to reach it; [...]

Three verbs are identified in this sentence, i.e., is, uses,
and reach. However, only reach is identified as the main
action by AUTOMATE, while uses is filtered out and is gets
discarded because it appears in a causal condition (introduced
by if).

5.2.2 Identifying semantic roles

In order to recognize the agent performing the action, the
object (e.g., the anatomy) undergoing it and the causal and
temporal (LTL) task relations, AUTOMATE uses the state-
of-the-art PropBank-based SRL method [28]. This method
labels relevant semantic roles in a sentence, using tags as Arg0
for the subject, Arg1 for the object, ArgM-ADV for adverbial
modifiers, ArgM-DIS for discourse markers and ArgM-TMP
for temporal markers [31]. AUTOMATE enriches SRL with
the identification of word connectors specified in Section 3,

Fig. 2 Overview of the pro-
posed approach: AUTOMATE
to extract LTL templates +
semi-automatic translation to
executable logic programs Identifying robotic setup

Procedural knowledge extration

From Semantic Roles to LTL Templates

Anatomy

Instrument
used

Causal
Roles

Temporal
Roles

Proc.
Text

Main Action

Commonsense and domain specific refinement

Executable logic program

PoS Tagging + SRL + Rules

Agent

Input Text

List of
evoking
verbs

List of
Instruments

SRL
+

Rules
+ + =>

Mapping
between arms

and instruments
Procedural
sentence
detector

Procedural
semantic
entities

+ LTL
Operators

+ Mapping
Rules => LTL

Templates

Mapping natural language procedures descriptions to linear temporal logic templates

1 3

in order to recognize LTL relations. Specifically, to detect
conditions, AUTOMATE selects roles labeled as ArgM-ADV
(adverbial modifiers) or ArgM-DIS (discourse Markers) and
considers only the ones containing the words if/otherwise or
in case, thus respecting the defined language constraints. For
detecting temporal relations, AUTOMATE selects spans of
text labeled as ArgM-TMP and containing words repeat/until
for loops, or then and once for sequences.

In order to identify tokens playing the role of agents, objects
or instruments, AUTOMATE uses a different strategy for robot-
as-agent and surgeon-as-agent scenarios. In fact, in the first sce-
nario, the robotic arm or instrument plays the role of subject, and
thus Arg0 label corresponds to the agent, while the object plays
the role of a proto-patient[31], thus corresponding to Arg1 label.
For instance, in the tissue retraction text, the sentence:

The camera selects a point on the tissue if it is far from APs

is labeled as:

[Arg0: The camera] [V: selects] [Arg1: a point on the
tissue] [ArgM-ADV: if it is far from APs].

Then, given the select action, the agent is the camera
(Arg0) and the object is the point on the tissue (Arg1).

When the surgeon is the agent, the situation is more com-
plex because the instrument/arm is not the subject (Arg0)
and may occur in spans of text corresponding to other
semantic roles. In this case, AUTOMATE relies on the avail-
able list of surgical instruments and searches their mentions
among the span of texts labeled as Arg-MNR, Arg2, or Arg3
by SRL. For instance, in the peg transfer scenario, consider
the following sentence:

First, the surgeon identifies rings via camera

This is annotated by SRL as:

[ArgM-TMP: First], [Arg0: the surgeon] [V: identifies]
[Arg1: rings] [ArgM-MNR: via camera].

The word camera is a candidate instrument and it is con-
tained in a span of text labeled as ArgM-MNR by SRL. It
is thus recognized as the instrument for the identify action.

While instrument/arm tokens can be retrieved from the
available list in the setup description, the use of SRL is still
necessary. In fact, not all mentions of medical instruments in
a sentence refer to the actual usage of an instrument to per-
form the main action. For instance, Arg1 labels cannot rep-
resent agents for the same action they are objects of. Then,
SRL is useful to identify the candidate arguments which can
actually refer to the instrument, from a semantic perspective.
For instance, the sentence:

The surgeon uses the first arm to grasp scissors

is annotated by SRL as:

[Arg0: The surgeon] uses the first arm to [V: grasp]
[Arg1: scissors],

 that is, scissors is correctly recognized as the thing grasped
(Arg1 of grasp), hence it is discarded and the first arm (which is
still in the list of possible agents) is marked as the actual agent.

Finally, benchmark texts also use pronouns (e.g., it) to
avoid word repetitions, as a common practice in natural
language. AUTOMATE performs the co-reference resolu-
tion by mapping each pronoun to the immediately previous
semantic role labeled in the same way. While this approach
is effective in our experiments, some deeper co-reference
resolution systems, e.g., [32], may be needed in more com-
plex scenarios.

5.3 From semantic roles to LTL templates

The output of SRL highlights relevant semantic infor-
mation about task knowledge, including agents, objects,
and temporal-causal relations. This information is then
automatically translated to LTL templates, directly
mapping temporal-causal roles to logical operators
with static rules. Specifically, if/otherwise statements
are mapped to logical implications (→), then/once are
mapped to next (◦) operator and until/repeat to until
(U) operator.

The following sentences from the texts of our benchmark
tasks clarify the process:

[SEN-1] In case the point is close to first arm, the point is
reached by first arm; otherwise, the second arm reaches
the point.
[SEN-2] Then, the gripper grasps the tissue.
[SEN-3] The arm lifts the tissue until a maximum
height is reached, or maximum force is reached, or the
ROI is visible.

The respective output of SRL is:

[ArgM-ADV: In case the point is close to first arm,]
[Arg1: the point] is [V: reached] [Arg0: by first arm;]
[ArgM-ADV: otherwise] [Arg0: the second arm] [V:
reaches] [Arg1: the point.]

[ArgM-TMP: Then,] [Arg0: the gripper] [V: grasps]
[Arg1: the tissue.]

[Arg0: The arm] [V: lifts] [Arg1: the tissue] [ArgM-TMP:
until a maximum height is reached, or maximum force is
reached, or the ROI is visible.]

 M. Bombieri et al.

1 3

After the previous stage, main actions are represented as
predicates verb(agent, object, other_roles), according to the
typical formalism of action languages2:

reach(the first arm, the point, ADV: in case the point is
close to first arm)
reach(the second arm, a point on the tissue, ADV:otherwise)

grasp(first arm, the tissue, TMP:then)

raise(first arm, the tissue, TMP:until a maximum height is
reached, or maximum force is reached, or the ROI is visible).

Temporal and causal roles are then directly mapped to
corresponding LTL relations by means of logical operators,
obtaining LTL templates. For the above example, the output is:

[LTL-1a] reach(first arm, a point on the tissue) ← the
point is close to first arm
[LTL-1b] reach(second arm, a point on the tissue) ← ¬
the point is close to first arm
[LTL-2] ◦ grasp(first arm, tissue)
[LTL-3] raise(first arm, tissue) U (maximum height is
reached ∨ maximum force is reached ∨ the ROI is visible)

where ∨ is the logical disjunction and ¬ is the logical
negation. The meaning of underlined parts will be clarified
in the next section.

This section concludes the automatic part of AUTOMATE
and allows us to reply positively to our research question
RQ1. In fact, in Section 3 we have started from highly special-
ized and expressive surgical texts and defined reasonable and
loose language constraints based on a domain-specific sys-
tematic analysis. This has allowed us to generate texts in Sec-
tion 4, which preserve most of the expressiveness of natural
language, e.g., different verb tenses, the use of synonyms and
pronouns, active and passive forms, and richness of semantic
roles. AUTOMATE is then able to retrieve LTL templates
that correctly express the causal and temporal flow of actions,
enucleating relevant procedural information from text.

5.4 From LTL templates to an executable logic
program

LTL templates extracted by AUTOMATE must be translated
to the syntax of a specific logic program, in order to be effec-
tively used for robotic task planning.

A logic program (based on an action language as, e.g.,
PDDL) represents a domain of interest with a signa-
ture (alphabet), defining main variables and predicates of

variables (atoms), and a set of axioms encoding causal and
temporal relations between atoms. As an example, consider
the sentence from the above section:

The first arm raises the tissue until maximum height is
reached [...]

Atoms are used to represent the action predicate raise(first
arm, tissue) and the (task-independent) concept maximum
height is reached, e.g., as reached(max_height).

Atoms for actions can be automatically retrieved from the
final step of AUTOMATE (see previous section), where pred-
icates in the form verb(agent, object) are automatically built.
The only further required step is to map instances of agents
to a more general Agent variable, i.e., lifting raise(first
arm, tissue) to raise(Agent, tissue), in order
to build generic LTL rules. This step is performed automati-
cally, by mapping all instrument occurrences in AUTO-
MATE predicates to the unique variable name.

The atom reached(max_height), as well as parts
underlined in statements LTL1-a to LTL-3, represent environ-
mental concepts which are less trivial to represent, hence still
require handcrafting from the programmer. However, typically
these concepts are not task-specific, but they represent at most
domain-specific commonsense information. For several sce-
narios of interest, ontologies encoding commonsense concepts
are available, e.g., [26] for surgery, [33] for rehabilitation and
[34] for robotics and automation. Thus, it is possible to reuse
and slightly extend already existing ontologies [35] to define
missing atoms in LTL rules. For instance, reached(max_
height) atom in the previous example can be encoded
exploiting the already available PositionPoint class in [34].

Finally, as mentioned in the previous section, the map-
ping of LTL operators to their specific logic programming
encoding is performed automatically. The above sentence
can then be translated to a statement in logic programming:

This section replies to research question RQ2. AUTO-
MATE retrieves LTL templates that have some missing infor-
mation, related to commonsense knowledge about the domain
of interest. Thus, in order to bridge the gap with actual robotic
implementation, it is necessary to retrieve such knowledge
from existing domain-specific ontologies, or slightly extend
them in case of very specialized and unconventional scenarios.

6 Experimental evaluation

In this section, we evaluate the quality and utility of the
procedural knowledge extracted from texts, addressing RQ3.
In more detail, we verify that the extracted task knowledge
is correct and general enough to compute suitable plans for

(1)lif t(arm, tissue) U reached(max_force)

2 In the third sentence, notice that lift and raise are automatically
identified as synonyms by WordNet’s synsets, and mapped to a single
action (arbitrarily chosen as raise).

Mapping natural language procedures descriptions to linear temporal logic templates

1 3

our benchmark robotic tasks, given different initial environ-
mental contexts. This requires:

1. implementation of LTL templates into a specific logic
programming language;

2. implementation of low-level routines for robotic motion
planning, control, and perception;

3. a simulated environment to replicate the benchmark
tasks and the robot.

To address the first requirement, we implement LTL
templates in the formalism of Answer Set Programming
(ASP), a state-of-the-art logic programming paradigm for
autonomous agents [36]. We adopt Clingo 5 [37] software
tool for ASP representation and solving (i.e., plan compu-
tation). For the second and third requirements, we use the
framework for integrated planning and execution of surgical
robotic tasks proposed in [25, 38]. This includes a simulated
version of the dVRK, the calibrated [39] surgical camera
for perception, and the realistic emulation of peg transfer
and tissue retraction scenarios. More specifically, we use a
CoppeliaSim3 environment for peg transfer, which involves
rigid manipulation; we then use finite-element simulation
in Sofa4 for tissue retraction.

We evaluate the quality of the extracted task specifica-
tions in terms of planning success and planning computa-
tional performance.

The planning success measures the percentage of suc-
cessful generation of task plans in a set of 100 random envi-
ronmental contexts, corresponding to different workflows of
execution, to assess the generality of extracted task knowl-
edge. Contexts differ in the initial location and number of
rings for peg transfer, and the locations of ROI and APs for
tissue retraction.

The computational performance is calculated as the time
required by Clingo to compute a plan, given some initial
environmental context. We evaluate this metric as the com-
plexity of the planning problem increases, as explained in
the following sections.

For both metrics, we compare the performance of the
automatically extracted LTL templates5 against the ASP
task description written by an expert programmer with full
knowledge about the domains of interest. There are dif-
ferences between hand-written ASP programs and LTL
templates extracted from procedural texts. In fact, hand-
written programs typically encode task knowledge as pre-
conditions and effects of actions, i.e., axioms connecting

environmental features to actions, as in standard action
languages such as PDDL [2]. Instead, procedural texts
typically contain information about the causal/temporal
flow of actions. For instance, with reference to the reach
and grasp actions reported in sentences SEN-1 to SEN-2
in Section 5.3, their mutual causal and temporal relation
is expressed in classical ASP in terms of pre- and post-
conditions as follows:

where :- is the logical implication (←), t is a variable
representing a discrete time step, and at(Agent, tissue, t)
is an environmental feature representing the location of
an arm with respect to an object, as an effect of reach
action. We make ASP encodings available in the linked
repository.

All experiments are performed in a simulated environ-
ment, using a PC with a 2.6 GHz Intel Core i7-6700HQ CPU
(4 cores/8 threads) and 16 GB RAM.

6.1 Peg transfer

Below, results for the peg transfer domain are presented.

6.1.1 Planning success

Domain variables which influence the workflow of execu-
tion, hence are relevant for assessing planning success, are:

• the number of rings, affecting the number of required
actions to complete the task successfully;

• initial placement of the rings on grey pegs, which
requires extraction before bringing them to the correct
pegs;

• the relative positions of the rings with respect to the
robotic arms, affecting reachability conditions and thus
possibly requiring transfer between arms before place-
ment on pegs.

Hence, we generate 100 random scenarios as follows:

• 19 scenarios present only 1 ring, 30 scenarios 2 rings, 22
scenarios 3 rings, and 29 scenarios 4 rings6

• 84/100 scenarios present at least one ring on a grey peg,
so they require extraction;

• 80/100 scenarios require transferring of rings between
arms.

(2)
at(Agent, tissue, t) ∶ − reach(Agent, tissue, t − 1) .

grasp(Agent, tissue, t) ∶ − at(Agent, tissue, t) .

3 https:// www. coppe liaro botics. com/
4 https:// www. sofa- frame work. org/
5 AUTOMATE pipeline is able to extract the same LTL relations
from surgeon-as-agent and robot-as-agent texts.

6 The maximum number of rings in the scene is set to 4 as of FLS
specifications [22].

https://www.coppeliarobotics.com/
https://www.sofa-framework.org/

 M. Bombieri et al.

1 3

The task is considered successful when all rings
are placed on the same-colored pegs. In all scenarios,
100% success rate is achieved by both LTL templates
extracted by AUTOMATE and the hand-written ASP
encoding.

6.1.2 Computational performance

The complexity of the planning problem depends on the
number of rings and actions to be executed (e.g., whether
the rings require extraction or not).

In Fig. 3a, we show the ratio between the planning time
with the ASP program extracted from the text and the expert-
written one, in the 100 random scenarios considered above
(sorted by plan length). The ratio decreases significantly as
the plan size increases, meaning that LTL templates encode
task knowledge more efficiently, enhancing scalability to
more complex task instances.

This is even more evident in Figure 3b, showing the
planning time for both ASP programs against the plan

length. As the plan length increases, the computational
performance of the ASP program extracted from text
scales linearly with the length of the plan, thus signifi-
cantly better than the hand-written program with quadratic
progression. This happens because of the different ASP
representations, with the classical hand-written ASP for-
malization having more axioms as explained at the begin-
ning of Section 6, which require more computational effort
from Clingo.

Notice that the two ASP programs generate plans with
different lengths, though under the same initial configura-
tions. This depends on a slightly different action representa-
tion. For instance, in the text description, there are actions
as selecting a target ring with camera which are captured
by SRL and then converted to LTL/ASP predicates. How-
ever, such actions are not properly moving actions, so they
do not affect the workflow of execution. Hence they are
not encoded by the expert writing the ASP program from
scratch.

6.2 Tissue retraction

For tissue retraction, we assume that the tissue may be
grasped from a discrete set of points, obtained as follows:

1. the rectangular tissue flap is discretized as a N × N grid;
2. candidate grasping points are centroids of cells in the

grid.

At the ASP level, a variable for the candidate grasping
point is added, instead of the generic tissue, with a unique
identifier for each point in {1, ...,N2} . Grasping points are
chosen depending on the distance from APs.

6.2.1 Planning success

Variables that affect the workflow of execution are:

• the initial position of the ROI, since grasping and pulling
the tissue may not be sufficient to expose it and horizon-
tal folding may be needed;

• a different robotic arm may be needed to grasp the tis-
sue, depending on the reachability of the chosen grasping
point.

Hence, we generate random contexts with fixed N = 5
grid discretization, specifically 35/100 requiring re-planning
and 67/100 requiring usage of the first arm. The task is con-
sidered to be successfully executed if the final ROI exposure
percentage is ≥ 70% . When the hand-written ASP program
is implemented for task planning, the planning success rate
is 98%, against 94% with the ASP program extracted from
text. However, the mean and standard deviation of ROI

Fig. 3 On top, the ratio between planning times with ASP program
from text and hand-written ASP program, for 100 random initial con-
figurations sorted by plan length. In the bottom, mean and standard
planning times for the two ASP programs vs. plan length (mean ± std
deviation are reported for plans with the same size). In the box, focus
on the results for LTL templates extracted by AUTOMATE (same
units as the main plot) is shown

Mapping natural language procedures descriptions to linear temporal logic templates

1 3

exposure is higher with LTL templates (97.47% ± 6.90%
vs. 92.26% ± 9.53%). Thus, overall planning success is not
significantly different.

6.2.2 Computational performance

The planning time with Clingo depends mainly on the num-
ber of candidate grasping points, i.e., the grid discretization
parameter N [24]. Hence, we consider different N × N grid
discretizations of the tissue flap, with N ∈ {5, ..., 15} , and
randomize 20 different locations of APs and ROI for each
of them.

In Fig. 4a we show the ratio between planning times
obtained with the ASP program extracted from the text and
the hand-written one. The ratio is always < 1 , meaning that
ASP axioms extracted from the text are slightly more effi-
cient than hand-written ones. The ratio does not significantly
vary for different tissue discretizations, while the absolute
discrepancy between planning times for the two ASP pro-
grams increases (Fig. 4b). Thus, extracted LTL templates are
still slightly more efficient for the ASP solver.

6.3 Evaluation considerations

Thanks to the above results, we can positively answer research
question RQ3: combining LTL templates extracted from
AUTOMATE with minimal domain-dependent commonsense
knowledge, it is possible to implement more compact com-
putationally efficient logic programs representing task knowl-
edge, preserving the rate of successful planning instances.

7 Conclusion

In this paper, we have presented AUTOMATE, an automatic
pipeline for procedural robotic task knowledge extraction from
specialized texts. Our methodology tackles the complex prob-
lem of identifying LTL templates in expert-written descrip-
tions of tasks, combining automatic procedural sentence clas-
sification, POS tagging, SRL, and information filtering rules.
Unlike state-of-the-art approaches, AUTOMATE does not
rely on oversimplifying language constraints and assumptions.
Instead, we consider the very challenging surgical robotic
domain, and define the required expressiveness of input texts,
based on the analysis of surgical language variability in a pub-
licly available dataset of procedural annotations and manuals.
Moreover, AUTOMATE is robust concerning several aspects
of natural language variability, never fully addressed in previ-
ous research. First, it can identify all main LTL operators, e.g.,
◦ and U , as well as standard logical connectors. Secondly, it
can deal with different verbal configurations (i.e., active and
passive forms and modal verbs) and perspectives in writing
(i.e., texts written from the point of view of the human or
the robot). Finally, we empirically show that to bridge the
gap between procedural texts and effective implementation of
extracted knowledge, thus obtaining logic programs for actual
robotic task automation, low-level commonsense knowledge
is required, that is often a-priori coded or contained in domain
ontologies. In the context of two simulated benchmark surgi-
cal training tasks, we have shown that automatically extracted
task knowledge is sufficient to successfully complete multiple
random task instances, outperforming logic programs written
by expert programmers in terms of computational efficiency.
AUTOMATE also offers a unique advantage for robotic pro-
grammers, since it provides them with clear LTL specifica-
tions about a task and domain of interest, which only requires
to be translated into a specific logic program. This is funda-
mental, especially in complex scenarios, where programmers
have limited domain knowledge. Moreover, AUTOMATE can
be easily extended to other domains of interest, after defining
suitable language constraints accordingly.

In conclusion, we can positively answer RQ1: extracting
LTL templates from specialized texts is feasible, without
relying on oversimplifying language restrictions, but only
on a systematic linguistic analysis of the domain. For RQ2,

Fig. 4 On top, the ratio (mean ± standard deviation) between plan-
ning times with ASP program from text and hand-written ASP pro-
gram for tissue retraction task, for different size N of grid discretiza-
tion. In the bottom, mean and standard planning times for the two
ASP programs vs. grid size

 M. Bombieri et al.

1 3

we state that translating LTL templates to an executable
logic program is possible, under the assumption that mini-
mal task-independent commonsense knowledge about the
domain is available, e.g., from existing domain ontologies.
Finally, results show that the LTL program extracted from
text outperforms a handcrafted one in terms of computa-
tional time while guaranteeing the same success rate, thus
positively answering RQ3. This paper opens several future
work directions. One fundamental consideration is about
the completeness of task knowledge available in specialized
texts. In fact, especially in complex scenarios such as surgi-
cal robotics, only nominal procedures, and the most com-
mon variants are typically described. Thus, it is important
to integrate extracted LTL templates, with task knowledge
inferred from available datasets of execution, e.g., employ-
ing unsupervised action segmentation [40] and inductive
learning to discover task specifications [41]. In this way, it
is possible to guarantee that the autonomous system can deal
with the highest number of unexpected events. Moreover,
to apply our pipeline to more challenging surgical proce-
dures, we will adopt NLP domain adaptation techniques,
following recent research trends [42, 43] to deal with highly
technical expressions in texts. Finally, we plan to validate
AUTOMATE in different domains and to bring extracted
logic programs on a real robotic setup, to integrate task plan-
ning with the challenges of perception and motion control.

Funding Open access funding provided by Università degli Studi di
Verona within the CRUI-CARE Agreement. This project has received
funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agree-
ment No. 742671 “ARS”).

Data availability We make the autonomous framework publicly avail-
able at https:// gitlab. com/ altai rLab/ AUTOM ATE

Declarations

Conflicts of interest All the authors declare that they have no conflict
of interest.

Ethical approval This article does not contain studies with human par-
ticipants or animals.

Informed consent Statement of informed consent is not applicable
since the manuscript does not contain any patient data.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Proposal for a regulation of the European parliament and of the
council laying down harmonised rules on artificial intelligence
(artificial intelligence act) and amending certain Union legisla-
tive acts (2021).https:// eur- lex. europa. eu/ legal- conte nt/ EN/ TXT/
PDF/? uri= CELEX: 52021 PC0206

 2. Haslum P, Lipovetzky N, Magazzeni D, Muise C (2019) An intro-
duction to the planning domain definition language. Synth Lect
Artif Intell Mach Learn 13(2):1–187

 3. Apt KR (1990) Logic programming. Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), 493–574

 4. Park H, Motahari Nezhad HR (2018) Learning procedures from
text: Codifying how-to procedures in deep neural networks. Comp
Proc Web Conf 2018:351–358

 5. Hsiung E, Mehta H, Chu J, Liu X, Patel R, Tellex S, Konidaris G
(2022) Generalizing to new domains by mapping natural language
to lifted ltl. In: 2022 International Conference on Robotics and
Automation (ICRA), pp. 3624–3630. IEEE

 6. Pnueli A (1977) The temporal logic of programs. In: 18th Annual
Symposium on Foundations of Computer Science (1977), pp. 46
– 57. IEEE

 7. Yang G-Z, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE,
Hata N, Kazanzides P, Martel S, Patel RV et al (2017) Medical
robotics-regulatory, ethical, and legal considerations for increas-
ing levels of autonomy. Sci Robot 2(4):8638

 8. Mujtaba D, Mahapatra N (2019) Recent trends in natural lan-
guage understanding for procedural knowledge. In: 2019 Inter-
national Conference on Computational Science and Computa-
tional Intelligence (CSCI), pp. 420–424

 9. Brunello A, Montanari A, Reynolds, M (2019) Synthesis of
LTL formulas from natural language texts: State of the art
and research directions. In: 26th International Symposium on
Temporal Representation and Reasoning, TIME 2019, October
16-19, 2019. LIPIcs, vol. 147, pp. 17–11719. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Málaga, Spain

 10. Wambsganss T, Fromm H (2019) Mining user-generated repair
instructions from automotive web communities. In: Bui T (ed)
52nd Hawaii International Conference on System Sciences, HICSS
2019. ScholarSpace, Grand Wailea, Maui, Hawaii, USA, pp 1–10

 11. Qian C, Wen L, Kumar A, Lin L, Lin L, Zong Z, Li S, Wang
J (2020) An approach for process model extraction by multi-
grained text classification. In: Dustdar S, Yu E, Salinesi C, Rieu
D, Pant V (eds) Advanced Information Systems Engineering.
Springer, Cham, pp 268–282

 12. Nabizadeh N, Wersing H, Kolossa D (2021) Leveraging inter-
step dependencies for information extraction from procedural
task instructions . In: Text, Speech, and Dialogue - 24th Inter-
national Conference, TSD, Proceedings. Lecture Notes in Com-
puter Science , vol. 12848 , pp. 341 – 353. Springer, Olomouc,
Czech Republic

 13. Jiang Y, Zaporojets K, Deleu J, Demeester T, Develder C (2023)
Cookdial: a dataset for task-oriented dialogs grounded in pro-
cedural documents. Appl Intell 53(4):4748–4766

 14. Zhong B, Xing X, Luo H, Zhou Q, Li H, Rose TM, Fang W
(2020) Deep learning-based extraction of construction proce-
dural constraints from construction regulations. Adv Eng Inf
43:101003

 15. Wang X, El-Gohary N (2023) Deep learning-based relation extrac-
tion and knowledge graph-based representation of construction
safety requirements. Autom Const 147:104696

https://gitlab.com/altairLab/AUTOMATE
http://creativecommons.org/licenses/by/4.0/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021PC0206

Mapping natural language procedures descriptions to linear temporal logic templates

1 3

 16. Chambers AJ, Stringfellow AM, Luo BB, Underwood SJ, Allard
TG, Johnston IA, Brockman S, Shing L, Wollaber AB, VanDam
C (2020) Automated business process discovery from unstruc-
tured natural-language documents. In: Business Process Manage-
ment Workshops - BPM 2020 International Workshops. Lecture
Notes in Business Information Processing , vol. 397, pp. 232–243.
Springer, Seville, Spain

 17. Ning Q, Zhou B, Feng Z, Peng H, Roth D (2018) Cogcomptime:
A tool for understanding time in natural language . In: Blanco , E.
, Lu , W. (eds.) Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2018: System
Demonstrations, Brussels, Belgium, October 31 - November 4, 2018
, pp. 72 – 77 . Association for Computational Linguistics, Belgium

 18. Bombieri M, Rospocher M, Dall’Alba D, Fiorini P (2021) Auto-
matic detection of procedural knowledge in robotic-assisted surgi-
cal texts. Int J Comput Assist Radiol Surg 16(8):1287–1295

 19. Fellbau C (1998) Wordnet: An electronic lexical database
 20. Bentivogli L, Bocco A, Pianta E (2004) Archiwordnet: integrating

wordnet with domain-specific knowledge. In: Proceedings of the
2nd International Global Wordnet Conference, pp. 39–47

 21. Kazanzides P, Chen Z, Deguet A, Fischer GS, Taylor RH, DiMaio
SP (2014) An open-source research kit for the da vinci surgical
system. In: 2014 IEEE International Conference on Robotics and
Automation, ICRA 2014, May 31 - June 7, 2014 , pp. 6434 –
6439. IEEE , Hong Kong, China

 22. Soper NJ, Fried GM (2008) The fundamentals of laparoscopic
surgery: its time has come. Bull Am Coll Surg 93(9):30–32

 23. Nagy TD, Haidegger TP (2021) Towards standard approaches for
the evaluation of autonomous surgical subtask execution. In: 2021
IEEE 25th International Conference on Intelligent Engineering
Systems (INES), pp. 67–74. IEEE

 24. Meli D, Tagliabue E, Dall’Alba D, Fiorini P (2021) Autonomous
tissue retraction with a biomechanically informed logic based
framework. In: 2021 International Symposium on Medical Robot-
ics (ISMR). IEEE, Atlanta, GA, pp 1–7. https:// doi. org/ 10. 1109/
ISMR4 8346. 2021. 96615 73

 25. Tagliabue E, Meli D, Dall’alba D, Fiorini P (2022) Deliberation in
autonomous robotic surgery: a framework for handling anatomical
uncertainty. In: Proceedings-IEEE International Conference on
Robotics and Automation, pp. 11080–11086

 26. Gibaud B, Forestier G, Feldmann C, Ferrigno G, Gonçalves P,
Haidegger T, Julliard C, Kati D, Kenngott H, Maier-Hein L et al
(2018) Toward a standard ontology of surgical process models.
Int J Comput Assist Radiol Surg. 13(9):1397–1408

 27. Fiorini SR, Bermejo-Alonso J, Gonçalves P, De Freitas EP, Alar-
cos AO, Olszewska JI, Prestes E, Schlenoff C, Ragavan SV, Red-
field S et al (2017) A suite of ontologies for robotics and automa-
tion [industrial activities]. IEEE Robot Autom Mag 24(1):8–11

 28. Shi P, Lin J (2019) Simple BERT models for relation extraction
and semantic role labeling. CoRR abs/1904.05255

 29. Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-train-
ing of deep bidirectional transformers for language understanding.
In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT)

 30. Bird S (2006) NLTK: The Natural Language Toolkit. In: Proceed-
ings of the COLING/ACL 2006 Interactive Presentation Sessions
, pp. 69 – 72 . Association for Computational Linguistics , Sydney,
Australia

 31. Palmer M, Kingsbury PR, Gildea D (2005) The proposition
bank: An annotated corpus of semantic roles. Comput Linguistics
31(1):71–106

 32. Dobrovolskii V (2021) Word-level coreference resolution . In:
Moens , M. , Huang , X. , Specia , L. , Yih , S.W. (eds.) Proceed-
ings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event, 7-11 Novem-
ber, 2021 , pp. 7670 – 7675 . Association for Computational Lin-
guistics , Punta Cana, Dominican Republic

 33. Dogmus Z, Gezici G, Patoglu V, Erdem E (2012) Developing and
maintaining an ontology for rehabilitation robotics. In: KEOD ,
pp. 389 – 395

 34. Schlenoff C, Prestes E, Madhavan R, Goncalves P, Li H, Balakirsky
S, Kramer T, Miguelanez E (2012) An ieee standard ontology for
robotics and automation. In: 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems , pp. 1337 – 1342. IEEE

 35. Guerram, T, Mellal N (2018) A domain independent approach for
ontology semantic enrichment. Computer Science & Information
Technology, 13–19

 36. Meli D, Nakawala H, Fiorini P (2023) Logic programming for
deliberative robotic task planning. Artif Intell Rev 56:9011–9049

 37. Gebser M, Kaminski R, Kaufmann B, Ostrowski M, Schaub T,
Wanko P (2016) Theory solving made easy with clingo 5. In:
Technical Communications of the 32nd International Conference
on Logic Programming (ICLP 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik

 38. Ginesi M, Meli D, Roberti A, Sansonetto N, Fiorini P (2020)
Autonomous task planning and situation awareness in robotic sur-
gery. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems , pp. 3144 – 3150. IEEE

 39. Roberti A, Piccinelli N, Meli D, Muradore R, Fiorini P (2020)
Improving rigid 3-d calibration for robotic surgery. IEEE Trans
Med Robot Bionics 2(4):569–573

 40. Meli D, Fiorini P (2021) Unsupervised identification of surgi-
cal robotic actions from small non-homogeneous datasets. IEEE
Robot Autom Lett 6(4):8205–8212

 41. Meli D, Sridharan M, Fiorini P (2021) Inductive learning of
answer set programs for autonomous surgical task planning. Mach
Learn 110:1739–1763

 42. Bombieri M, Rospocher M, Ponzetto SP, Fiorini P (2022) The Robotic
Surgery Procedural Framebank . In: Proceedings of the Thirteenth
International Conference on Language Resources and Evaluation
(LREC 2022). European Language Resources Association (ELRA),
Marseille, France

 43. Bombieri M, Rospocher M, Ponzetto SP, Fiorini P (2023) Machine
understanding surgical actions from intervention procedure text-
books. Comput Biol Med 152:106415

Publisher's note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ISMR48346.2021.9661573
https://doi.org/10.1109/ISMR48346.2021.9661573

	Mapping natural language procedures descriptions to linear temporal logic templates: an application in the surgical robotic domain
	Abstract
	1 Introduction
	2 Related works
	3 Definition of domain language constraints
	4 Benchmark tasks and texts
	5 AUTOMATE pipeline
	5.1 Identifying robotic setup and procedural sentences
	5.2 Procedural knowledge extraction
	5.2.1 Selecting main action
	5.2.2 Identifying semantic roles

	5.3 From semantic roles to LTL templates
	5.4 From LTL templates to an executable logic program

	6 Experimental evaluation
	6.1 Peg transfer
	6.1.1 Planning success
	6.1.2 Computational performance

	6.2 Tissue retraction
	6.2.1 Planning success
	6.2.2 Computational performance

	6.3 Evaluation considerations

	7 Conclusion
	References

