
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-021-06013-7

1 3

Inductive learning of answer set programs for autonomous
surgical task planning

Application to a training task for surgeons

Daniele Meli1 · Mohan Sridharan2 · Paolo Fiorini1

Received: 1 December 2020 / Revised: 19 May 2021 / Accepted: 27 May 2021
© The Author(s) 2021

Abstract
The quality of robot-assisted surgery can be improved and the use of hospital resources
can be optimized by enhancing autonomy and reliability in the robot’s operation. Logic
programming is a good choice for task planning in robot-assisted surgery because it sup-
ports reliable reasoning with domain knowledge and increases transparency in the decision
making. However, prior knowledge of the task and the domain is typically incomplete, and
it often needs to be refined from executions of the surgical task(s) under consideration to
avoid sub-optimal performance. In this paper, we investigate the applicability of inductive
logic programming for learning previously unknown axioms governing domain dynamics.
We do so under answer set semantics for a benchmark surgical training task, the ring trans-
fer. We extend our previous work on learning the immediate preconditions of actions and
constraints, to also learn axioms encoding arbitrary temporal delays between atoms that are
effects of actions under the event calculus formalism. We propose a systematic approach
for learning the specifications of a generic robotic task under the answer set semantics,
allowing easy knowledge refinement with iterative learning. In the context of 1000 simu-
lated scenarios, we demonstrate the significant improvement in performance obtained with
the learned axioms compared with the hand-written ones; specifically, the learned axioms
address some critical issues related to the plan computation time, which is promising for
reliable real-time performance during surgery.

Keywords Inductive logic programming · Surgical robotics · Answer set programming

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumančić, Ute Schmid, Jay Pujara.

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 742671 (ARS).

 * Daniele Meli
 daniele.meli@univr.it

Extended author information available on the last page of the article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/478720973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-3162-388X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06013-7&domain=pdf

 Machine Learning

1 3

1 Introduction

In the last few decades, robots have been used in operating rooms to assist surgeons
in performing minimally invasive surgery, improving the precision of surgeons and the
recovery time of patients (Mack 2001; Vidovszky et al. 2006). At present, surgeons use
a console to tele-operate patient-side manipulators. One long-term goal of research in
surgical robotics is the development of robot systems capable of executing a surgical
operation, or at least a part of it, with minimal supervision of a human expert (Cam-
arillo et al. 2004; Moustris et al. 2011). Such robot systems can boost safety, opti-
mize resource usage, and reduce patient recovery time, surgeon fatigue, and hospital
costs (Yang et al. 2017). The complexity of surgical scenarios makes it difficult to
encode comprehensive domain knowledge or provide many labeled training examples.
Hence, autonomy requires the robot to reason with incomplete commonsense domain
knowledge, and adapt automatically to variations in the surgical scenario and individ-
ual patients. In Ginesi et al. (2020) we proposed a framework for surgical task execu-
tion that integrated logic-based reasoning about task-level actions with adaptive motion
planning and control. This task-level reasoning was based on Answer Set Programming
(ASP), a non-monotonic logic programming paradigm (Gebser et al. 2012). Logic pro-
gramming can encode high-level specifications and constraints extracted from expert
knowledge on the behavior of the robot system, in order to provide reliable operation in
dynamic domains. Moreover, the non-monotonic logical reasoning capability of ASP,
i.e., the ability to retract previously held beliefs, is important in robotics applications. A
key limitation of our prior framework was that it assumed comprehensive knowledge of
the task and domain in terms of domain attributes (e.g., object properties) and axioms
governing domain dynamics (e.g., constraints, and action preconditions and effects).
This is not feasible in practical robotics domains, especially in surgical scenarios that
are characterized by high variability in the patient’s anatomy.

In this paper, we focus on the problem of learning previously unknown task-level
knowledge from a small number of example executions of a benchmark surgical train-
ing task, the ring transfer task, executed with the VinciⓇ robot from Intuitive Surgical.
We build on our recent proof of concept exploration of the use of inductive logic pro-
gramming (ILP) to learn previously unknown axioms governing domain dynamics in
answer set semantics (Meli et al. 2020). In that work, learned axioms represented action
preconditions and executability constraints, and learning was based on four example
executions. In this paper, we significantly extend this idea to consider temporal rela-
tions between domain attributes, learning previously unknown axioms representing the
delayed effects of actions. To do so, we reformulate the axioms in Ginesi et al. (2020)
using the principles of event calculus, a state of the art temporal logic formalism to
represent a system’s reaction to events (Kakas and Michael 1995; Kowalski and Sergot
1989). This integration of ILP and event calculus supports fast learning with standard
hardware resources.

The remainder of this paper is organized as follows. Section 2 reviews the state of the
art in surgical process modeling and learning of domain knowledge. Next, Sect. 3 describes
the ring transfer task and its original hand-written ASP encoding, introducing the new event
calculus formalism for the effects of actions. Section 4 formalizes the ILP task under the
answer-set semantics. Section 5 presents the results of evaluating our approach for learning
axioms in simulated scenarios requiring coordination of different action sequences. Finally,
Sect. 6 describes the conclusions and future research directions.

Machine Learning

1 3

2 Related work

Building a surgical process model (SPM) requires the designer to choose the level of gran-
ularity at which the task is to be analyzed. We use the definition of granularity (for surgical
processes) provided in Lalys and Jannin (2014) and shown in Fig. 1. Learning an SPM for
tasks involving motion is challenging since surgical gestures present high variability (Neu-
muth et al. 2006). Hence, statistical methods such as Markov models (Loukas and Geor-
giou 2013; Tao et al. 2012; Lalys and Jannin 2014) are typically used to infer a motion-
level SPM.

In this paper, we focus on learning SPMs at a coarser granularity, i.e. at the level of
relations between activities (or actions) that constitute a surgical step or phase. An action
is an elementary motion associated with semantics; it specifies, for example, the arm and
the surgical tool to be used to perform this action. The sequence of actions is affected by
the variations in the anatomical conditions. Bayesian networks (BNs) represent the state
of the art for learning SPMs at this granularity (Blum et al. 2008; Charrière et al. 2017).
Recurrent (deep) neural networks have also been explored, exhibiting improvement in the
accuracy at the expense of increased computational effort during training (Dergachyova
et al. 2018). Since surgical tasks typically involve a transition between a sequence of states,
a hidden Markov model has been used to model the surgical training task of ring trans-
fer, which involves cooperation between a human and a robot (Berthet-Rayne et al. 2016).
However, even a simplified version of this training tasks required 80 labeled human execu-
tions for training, making scalability to more complex tasks challenging. Another key limi-
tation of many statistical methods is that they generate black-box models that do not pro-
vide any guarantees in terms of correctness and soundness, affecting the reliability of the
surgical system. On the other hand, logic-based formalisms for representing and reasoning
with domain knowledge inherently provide correctness guarantees (Neumuth et al. 2006),
and they make the underlying reasoning more transparent. However, such logic-based for-
malisms for the ring transfer task have required comprehensive domain knowledge to be
encoded a priori (Ginesi et al. 2020; Hong and Rozenblit 2016), which is difficult to do in
more complex surgical scenarios.

There are many methods in AI for learning domain knowledge. Examples include
the incremental revision of action operators represented in first-order logic (Gil 1994),
the expansion of a theory of actions to revise or inductively learn ASP system descrip-
tions (Balduccini 2007), and the combination of non-monotonic logical reasoning, induc-
tive learning, and relational reinforcement learning to incrementally acquire previously
unknown actions and their preconditions and effects (Sridharan and Meadows 2018). Previ-
ously unknown axioms governing domain dynamics have also been learned using decision
tree induction in a framework that combines ASP-based non-monotonic logical reason-
ing with deep learning for scene understanding (Mota and Sridharan 2019, 2020). These
approaches may be viewed as instances of interactive task learning, a general framework
for acquiring domain knowledge using labeled examples or reinforcement signals obtained
from domain observations, demonstrations, or human instructions (Laird et al. 2017).

Fig. 1 Standard granularity levels of surgical processes, as described in Lalys and Jannin (2014)

 Machine Learning

1 3

Our framework for learning domain knowledge uses ILP to learn previously unknown
domain axioms represented as ASP programs. ILP was developed to support learning from
a limited set of labeled examples (Muggleton 1991). It has been used by an international
research community in different domains, e.g., to identify a driver’s cognitive stress and
distraction (Mizoguchi et al. 2015); for event recognition in city transport (Katzouris et al.
2015a); and to learn logic programs in robotics (Cropper and Muggleton 2019). ILP has
also been successfully applied to the learning of programs based on the paradigm of event
calculus (Moyle and Muggleton 1997), but providing the event calculus specification of
any non-trivial task or domain can be challenging. Methods have been developed for auto-
mated, scalable, and incremental learning of event calculus definitions (Alrajeh et al. 2006;
Katzouris et al. 2019). ILP has also been used to support learning in non-monotonic logic
programs (Law et al. 2018) and probabilistic logic programs (De Raedt and Kersting 2008).
In complex domains such as surgical robotics, learning with probabilistic logics is compu-
tationally challenging (Ng and Subrahmanian 1992), but non-monotonic logical reasoning
is still necessary. We thus choose to build on ILASP, an implementation of ILP for learning
domain axioms under answer set semantics (Law 2018). ILASP provides key advantages in
comparison with other ILP-based approaches for learning axioms. For example, it supports
faster learning than Inspire (Schüller and Benz 2018), another system based on answer set
semantics, because it has fewer hyper-parameters. Although ILASP (by itself) does not
support Inspire’s ability to automatically create and generalize predicates to obtain shorter
axioms, this limitation can be partially overcome with an iterative version of ILASP. In
addition, it has been shown (Law 2018) that ILASP is more general than XHAIL (Ray
2009), a state of the art tool for inductive learning of event calculus-based axioms, and its
competitor ILED (Katzouris et al. 2015b). It also guarantees some appealing properties
that are discussed in Sect. 4.

3 Original ASP encoding of the ring transfer task

Figure 2 shows the setup for the illustrative surgical training task of ring transfer. The
objective is to place colored rings on pegs of the corresponding color using the two patient-
side manipulators (PSM1 and PSM2) of the VinciⓇ robot. Each PSM can grasp any reach-
able ring and place it on any reachable peg; reachability is determined by the relative

Fig. 2 Setup for the ring transfer
task. The dashed line marks the
reachability regions for the two
PSMs of the VinciⓇ robot

Machine Learning

1 3

position of rings and pegs with respect to the center of the base. Pegs can be occupied
by other rings and must be freed before placing the desired ring on it. Also, rings may be
on pegs or on the base in the initial state, i.e., some rings may need to be extracted before
being moved.

We describe the ring transfer task in an established format for answer set programming
(ASP) (Calimeri et al., 2020). ASP is a declarative language that can represent recursive
definitions, defaults, causal relations, and constructs that are difficult to express in clas-
sical logic formalisms (Gebser et al. 2012). It encodes concepts such as default negation
(negation by failure) and epistemic disjunction, e.g., unlike “ ¬a”, which implies that “a is
believed to be false”, “not a” only implies “a is not believed to be true”, i.e., each literal
can be true, false or unknown. ASP supports non-monotonic logical reasoning, i.e., adding
a statement can reduce the set of inferred consequences. Modern ASP solvers support effi-
cient reasoning with large knowledge bases or incomplete knowledge, and are used by an
international research community (Erdem and Patoglu 2018).

A domain’s description in ASP comprises a system description D and a history H .
D comprises a sorted signature Σ and axioms. Σ comprises basic sorts arranged hierar-
chically; statics, i.e., domain attributes whose values do not change over time; fluents,
i.e., domain attributes whose values can be changed; and actions. Domain attributes and
actions are defined in terms of the sorts of their arguments. Fluents can be inertial (i.e.,
those that obey inertia laws and whose values are changed directly by actions) or defined
(i.e., those that do not obey inertia laws and whose values are not changed directly by
actions). Variables and object constants are terms; terms with no variables are ground. A
predicate of terms is an atom; it is ground if all its terms are ground. An atom or its nega-
tion is a literal. For the ring transfer task, statics include location (including instance
center), object (with sub-sorts ring and peg), the robot’s arm (with instances
psm1 and psm2), the color of each ring and peg (can take values: red, green, blue, yel-
low, grey), and time for temporal reasoning; and fluents include reachable(arm,
object, color), in_hand(arm, ring, color), on(ring, color, peg,
color), at(arm, center), closed_gripper(arm), and at(arm, object,
color). Actions include move(arm, object, color), move(arm, center,
color), grasp(arm, ring, color), extract(arm, ring, color) and
release(arm). Given this Σ , axioms describing domain dynamics are first specified as
statements in an action language, e.g., AL

d
 (Gelfond and Inclezan 2013), and then trans-

lated to ASP statements. Axioms define causal laws (i.e., action effects and preconditions),
state constraints, and executability conditions (i.e., conditions under which certain actions
are forbidden); some examples are provided later in this section. The domain’s history H
is a record of statements encoding the observation of the values of particular fluents, and
the execution of particular actions, at particular time steps.

To reason with domain knowledge, we construct the ASP program Π(D,H) that includes
the signature, axioms of D , inertia axioms, reality checks, closed world assumptions for
actions, observations and actions from H , and helper statements (e.g., for goal definition,
planning, and diagnostics). Planning, diagnostics, and inference can then be reduced to com-
puting answer sets of Π . An answer set (AS) describes a possible world in terms of the beliefs
of an agent associated with Π . We use the Clingo solver (Gebser et al. 2008) to generate
answer set(s) of ASP program(s). For the ring transfer task, we are primarily interested in
atoms of actions, and a subset of the fluents and statics; for simplicity, we will only focus on
these atoms in our description of Π(D,H) and its answer sets below. In our description, we
will denote variables of specific sorts using capital letters (e.g., O for object, R for ring, P
for peg, C for color, and A for arm), while constant values (e.g., specific instances of color

 Machine Learning

1 3

or location) will be represented in lower case (e.g., center or red). The axioms of the ring
transfer task are described next.

3.1 Preconditions of actions

Preconditions are statements that need to hold true for the corresponding actions to be have
the desired effect(s), i.e., they help define causal laws. We define preconditions and guess exe-
cuted actions of the domain with the following statement:

where 0 {a : b} 1 is an aggregate rule forcing the ASP solver to compute an answer
set with at most one element a, given that b holds. Capital letters represent variables, “ _ ”
is a placeholder for unused variables in the rules, and “t” refers to a discrete time step.
Adding “t” as an additional argument is short hand that the corresponding action (flu-
ent) occurs (holds) at a particular time step, e.g., grasp(A, R, C, t) instead of
occurs(grasp(A, R, C), t) implies that the robot arm A grasps ring R of color C
at time t; a precondition for this action is that the arm should be at same position as ring R
of color C. In a similar manner, we will use in_hand(A, R, C, t) interchangeably
with holds(in_hand(A, R, C), t) to imply that arm A has ring R or color C at
time t. We will also denote atoms with the argument t as atom

t
.

The use of an aggregate rule to define preconditions of actions, i.e., a statement such as
�{������ ∶ ��� − ���������}� , constrains the number of elements that can be selected
from a set. In this case, only one action can be executed at a time step, resulting in a sequential
execution of actions. Since the robot has two arms, we also consider parallel execution of an
action by each arm at each time step, revising Statement 1 as follows:

It is possible to combine the execution strategies, e.g., executing move(A, center,
_, t) executes a motion primitive that moves both arms in parallel to transfer a ring from
one arm to another.

3.2 Executability conditions

Executability conditions for the ring transfer task include the following:

(1)

�{����(�, �, �, �) ∶ ���������(�, �, �, �);

����(�, ������, _, �) ∶ ��_����(�, , �, �);

�������(�, , �, �) ∶ ��_����(�, , �, �);

���
	(�, , �, �) ∶ ��(�, , �, �);

�����
�(�, �) ∶ ��_����(�, , _, �)}�.

(2)�{������ ∶ ��� − ���������}� ∶ −���(�).

(3a)
∶ −����(��, �, _, �), ��_����(��, �, �, �),

��_����(��, �, �, �), ��! = ��.

(3b)∶ −����(�, ������, _, �), ��_����(�, �, �, �),��(�, �, �, _, �).

(3c)∶ −����(�, �, _, �), ��_����(�, �, �, �), ��(�, �, �, _, �).

Machine Learning

1 3

 where ∶ − ≡ ← , and each statement can be viewed as having a ⊥ in the head, i.e., atoms
on the right hand side of each statement cannot hold at the same time. These statements
thus describe conditions under which certain actions should not be considered for execu-
tion. Statement 3a implies that neither arm can move if they are both holding the same
ring (during transfer); Statements 3b,c implies that a ring which is still on a peg cannot be
moved; Statement 3d implies that an arm cannot move to a ring if the gripper is closed; and
Statement 3e specifies that an arm cannot move to an occupied peg—this does not prevent
an arm from moving to a ring that is on a peg by executing move(A, R, C, t). The
objective of the ring transfer task is to have all visible (i.e., reachable by any arm) rings on
pegs of matching color; this is expressed as the following constraint:

3.3 Effects of actions

In our previous work, we assumed the effects of actions to be “instantaneous”, i.e., that
they hold immediately after the action is executed and that these effects cease to hold at
the subsequent time step (Ginesi et al. 2020). Here we consider a more realistic scenario
by making the fluents inertial. Then, the inertia axioms ensure that fluents continue to hold
their value until these values are changed explicitly, e.g., by action execution or a specific
termination condition:

where F is an inertial fluent. In our illustrative ring transfer domain, effects are explicitly
related to the corresponding actions as follows:

(3d)∶ −����(�, �, _, �), ������_�������(�, �).

(3e)∶ −����(�, �, �, �), ��(�, _, �, �, �).

∶ −���������(_, �, �, �), ���������(_, �, �, �), �����(�, �, �, �, �).

�����(�, � + �) ∶ −�����(�, �), ���¬�����(�, � + �).

¬�����(�, � + �) ∶ −¬�����(�, �), ��������(�, � + �).

 Machine Learning

1 3

However, this formulation is challenging for ILP since it includes many default negations.
To reduce the number of such default negation statements, we introduce relations inspired
by work in event calculus. Event calculus was developed to represent and reason about
events and their effects in a logic programming framework (Kowalski and Sergot 1989).
An event calculus program relates the properties of a domain to triggering events. In our
case, we introduce two relations, initiated and terminated, to encode the initiating
and terminating conditions (respectively) for each fluent. We then reformulate the inertia
axioms as follows:

Next, we use these new relations to describe the effects of actions in the ring transfer
domain as follows:

(4)

��_����(�, �, �, �) ∶ −�����(�, �, �, � − �).

��_����(�, �, �, �) ∶ −��_����(�, �, �, � − �), ����������(�, � − �).

������_�������(�, �) ∶ − �����(�, �, _, � − �).

������_�������(�, �) ∶ −������_�������(�, � − �), ��� �������(�, � − �).

��(�, ��, , ��, �) ∶ −��_����(�, �, ��, � − �),

��(�, , ��, � − �), �������(�, � − �).

��(�, ��, , ��, �) ∶ −��(�, ��, , ��, � − �), ��� �������(_, �, ��, � − �).

��(�, �, �, �) ∶ −
�	�(�, �, �, � − �).

��(�, , �, �) ∶ −
�	�(�, , �, � − �).

��(�, ������, �) ∶ −
�	�(�, ������, _, � − �)

��(�, �, �, �) ∶ −��(�, �, �, � − �), ���
�	�(�, �, �, � − �).

��(�, �, �, �) ∶ −��(�, �, �, � − �), ���
�	�(�, ������, � − �).

��(�, ������, �) ∶ −��(�, ������, � − �), ���
�	�(�, �, �, � − �).

��(�, ������, �) ∶ −��(�, ������, � − �), ���
�	�(�, ������, � − �).

(5)
�����(�, �) ∶ −���������(�, �).

�����(�, �) ∶ −�����(�, � − �), �������������(�, �).

(6)

���������(��_����(�, �, �), �) ∶ −�����(�, �, �, � − �).

���������(������_�������(�), �) ∶ −�����(�, �, _, � − �).

���������(��(�, ��, , ��), �) ∶ −��_����(�, �, ��, � − �),

��(�, , ��, � − �), �������(�, � − �).

���������(��(�, �, �), �) ∶ −��
�(�, �, �, � − �).

���������(��(�, , �), �) ∶ −��
�(�, , �, � − �).

���������(��(�, ������), �) ∶ −��
�(�, ������, _, � − �).

(7a)
����������(��_����(�, �, �), �) ∶ −�������(�, � − �),

��_����(�, �, �, � − �).

(7b)����������(������_�������(�), �) ∶ −�������(�, � − �).

Machine Learning

1 3

 As stated in Sect. 3.1, two actions can be executed in parallel under some conditions. For
example, the execution of move(A, center, C) causes a different motion primitive
to be executed concurrently on the two arms; the main arm A is eventually at the transfer
location center, while the other arm is eventually at the grasping location of ring C. Two
additional axioms are added to encode this effect:

4 ILP task under AS semantics

The task of learning the system description under AS semantics has been formulated as
an ILP by other researchers; please see Law et al. (2018) for details. Here, we provide the
relevant definitions suitably adapted to our work and domain. A generic ILP problem T
under the AS semantics is defined as the tuple T = ⟨B, S

M
,E⟩ , where B is the background

knowledge, i.e. a set of axioms in ASP syntax; S
M

 is the search space, i.e. the set of candi-
date ASP axioms that can be learned; and E is a set of examples. The goal of T is to find a
subset H ⊆ S

M
 such that H ∪ B ⊧ E.

We use the iterative version of ILASP2 algorithm, ILASP2i, in the ILASP tool (Law
2018) to learn axioms inductively from ASP-syntax examples. This algorithm optimizes
the search process by focusing on incrementally satisfying only those examples which are
not covered by B and the current partial hypothesis (Law et al. 2016). In ILASP, examples
are considered to be partial interpretations defined as follows.

Definition 1 (Partial interpretation) Let P be an ASP program. Any set of grounded atoms
that can be generated from axioms in P is an interpretation of P. Given an interpretation I
of P, we say that a pair of subsets of grounded atoms e = ⟨einc, eexc⟩ is a partial interpreta-
tion extended by interpretation I if einc ⊆ I and eexc ∩ I = �.

(7c)
����������(��(�, ��, �, ��), �) ∶ −�������(_, �, ��, � − �),

�����(��), ��! = ��.

(7d)
����������(��(�, �, �), �) ∶ −����(�, �, ��, � − �), �����(�), ��! = �.

����������(��(�, �, �), �) ∶ −����(�, �, _, � − �), �����(�).

(7e)����������(��(�, �, �), �) ∶ −����(�, ������, _, � − �), �����(�).

(7f)����������(��(�, �, �), �) ∶ −����(�, �, ��, � − �), �����(�), �! = ��.

(7g)����������(��(�, �, �), �) ∶ −����(�, �, _, � − �), �����(�).

(7h)����������(��(�, �, �), �) ∶ −����(�, ������, _, � − �), �����(�).

(7i)����������(��(�, ������), �) ∶ −����(�, �, _, � − �).

(8)

���������(��(��, �, �), �) ∶ −����(��, ������, �, � − �), ��! = ��, ���(��).

����������(��(��, ������), �) ∶ −����(��, ������, _, � − �), ��! = ��, ���(��).

 Machine Learning

1 3

Given this definition, ILASP solves a learning task defined as follows.

Definition 2 (ILASP learning task) The ILASP learning task T = ⟨B, S
M
,E⟩ is a tuple of

background knowledge B, search space S
M

 and examples E = ⟨E+,E−⟩ such that E+ (E−)
is the subset of positive (negative) examples. The goal of T is to find H ⊆ S

M
 such that

∀e ∈ E , e is a partial interpretation of the ASP program B ∪ H . If AS is an answer set of the
ASP program H ∪ B , the following must hold:

The above definition introduces two different categories of examples: positive exam-
ples, which must be extended by at least one answer set of B ∪ H , and negative exam-
ples, which cannot be extended by any of the answer sets. In this sense, we say that
ILASP bravely induces positive examples, and cautiously induces negative examples
(Sakama and Inoue 2009). ILASP can learn action preconditions and effects from posi-
tive examples, and executability conditions from negative examples. In particular, we
exploit the ability of ILASP to learn from context-dependent examples (partial interpre-
tations), as explained in Law et al. (2016).

Definition 3 (Context-dependent partial interpretation (CDPI)) A CDPI of an ASP
program P with an interpretation I is a tuple e

c
= ⟨e,C⟩ , where e is a partial interpreta-

tion, and C is an ASP program called context. I is said to extend e
c
 if einc ∪ C ⊆ I and

(eexc ∪ C) ∩ I = �.

Definition 4 (ILASP task with CDPIs) An ILASP learning task with CDPIs is a tuple
T = ⟨B, S

M
,E⟩ , where E = ⟨E+,E−⟩ is a set of CDPIs with context C. We say that H ⊆ S

M

is a solution to T if the following hold:

All examples (for ILASP learning task) considered in this paper are tuples of the
form e = ⟨einc, eexc,C⟩ . This allows us to relate environmental fluents to actions when
learning axioms for the task, thus capturing the dynamic nature of the illustrative ring
transfer task.

ILASP allows to define the search space S
M

 with compact syntax, using mode bias to
specify the atoms that can occur in the body and head of axioms (right- and left-hand
side of an axiom respectively). In this paper, we consider two different kinds of learning
tasks: one for preconditions and executability conditions and one for effects of actions.
The specification of the mode bias for the two learning tasks will be presented in the
next section. Another feature of ILASP is that it is designed to find the minimal H in the
search space S

M
 . To explain this feature, we first define the length of an axiom.

Definition 5 (Length of an axiom) Let R be an axiom in an ASP program. The length of
R , |R| , is defined as the number of atoms that appear in it. For an aggregate rule, i.e. a
rule with an aggregate l {a1;a2;… ;a

n
} u in the head, the length of the head is defined as ∑u

i=l
i ⋅ n.

∀e ∈ E+ ∃AS s.t. B ∪ H ⊧ AS ∶ e is extended by AS

∀e ∈ E− ∄AS s.t. B ∪ H ⊧ AS ∶ e is extended by AS

∀e ∈ E+ ∃AS s.t. B ∪ H ∪ C ⊧ AS ∶ e is extended by AS

∀e ∈ E− ∄AS s.t. B ∪ H ∪ C ⊧ AS ∶ e is extended by AS

Machine Learning

1 3

The minimal set H is then the set of rules in S
M

 with minimal length that satisfy the goal
of ILASP task.

5 Experiments in the ring transfer domain

In this section, we describe the experimental setup and the results of experimentally evalu-
ating the capabilities of our approach in the context of the ring transfer task. In our experi-
ments, we focused primarily on the ability to learn previously unknown axioms describing
actions’ preconditions (e.g., Statement 1) and effects (e.g., Statement 4), and executability
conditions (Statement 3). In order to restrict the search space and improve the computa-
tional efficiency, separate ILASP tasks for each action are defined to learn the different
types of axioms. Also, separate ILASP tasks are defined for each domain fluent, one each
for the initiated and the terminated conditions respectively.

We begin by defining the background knowledge and the search space for ILASP tasks
(Sect. 5.1), and describe how the training examples were generated (Sect. 5.2). We then
discuss the results of comparing the learned axioms with the ground truth information pro-
vided by the designer (Sect. 5.3). In the first experiment, we used the length of axioms and
the computational time required by ILASP as the evaluation measures; we hypothesized
that the learned axioms would closely match the ground truth information. In the next
experiment, we considered 1000 simulated scenarios that mimic challenging conditions for
the ring transfer task, including both sequential and parallel execution of actions. In each
scenario, we conducted paired trials with the learned and ground truth axioms respectively.
In these trials, we used planning time and plan length as the evaluation measures (with
plans computed using the Clingo ASP solver).

5.1 Background knowledge and search space

In our experimental trials, we considered action preconditions and executability conditions
in one set and the action effects in another set. Below, we describe the initial set up for
these two sets of axioms.

5.1.1 Preconditions and executability conditions

For the experiment that focused on learning action preconditions and executability condi-
tions, the background knowledge of each ILASP learning task (one per action) included the
definitions of sorts and helper axioms describing the difference between two different arms
or colors:

The search space for each ILASP task was defined using mode bias for compactness. Spe-
cifically, for the task of learning preconditions and executability conditions for any given
action, we defined the search space such that the action can only occur in the head of an
aggregate rule (to capture preconditions) or in the body of axioms (for executability condi-
tions). In ILASP syntax, this corresponded to the statements #modeha(action) and
#modeb(1, action), respectively; #modeb(1, action) specifies that action

���������(��, ��) ∶ −���(��), ���(��), ��! = ��.

���������(��, ��) ∶ −�����(��), �����(��), ��! = ��.

 Machine Learning

1 3

can appear in the body of an axiom only once. We also specified that each environmen-
tal (i.e., domain) fluent presented in Sect. 3 may appear in the body of axioms, by add-
ing the mode bias statement #modeb(1, fluent). Similarly, we added the statement
#modeb(1, different). When defining the search space, arguments of atoms which
are variables or constants must be clearly stated in ILASP. Axioms with more variables
generally require more computational effort. For the task of learning preconditions and
executability constraints, only arm and color were defined as variables in atoms. Finally,
the length of the body of axioms is limited to three atoms using a specific ILASP flag from
command line, to reduce the dimension of the problem.

5.1.2 Effects of actions

To learn the effects of action, we set up two ILASP learning tasks per environmental fluent,
one each for the axioms associated with the initiated and terminated relations.
The background knowledge for these learning tasks contained the same ASP statements
presented in the previous section, and the laws of inertia (Statement 5). Moreover, since
effects are delayed with respect to actions, we included the concept of temporal sequence:

where delay is a variable constrained to the set 1..N and N is an estimate of the maxi-
mum delay between actions and effects in the domain; N can be increased until ILASP is
able to find a suitable hypothesis with the minimum temporal delay. For the ring transfer
task, ILASP found the minimum value of N=1. We then defined the search space using the
mode bias #modeh(initiated(fluent, t)) or #modeh(terminated(fluent,
t)), which specified the head of candidate normal axioms. Moreover, for each envi-
ronmental fluent f and each action action of the task, we stated #modeb(1, f t

),
#mode(1, action_t) to allow them in the body of candidate rules. Also #modeb(1,
prev) was included in the mode bias. Note that the inertia laws (Statement 5) imply that
fluent_t :- initiated(fluent, t), which would lead ILASP to learn the trivial
axiom:

As a result, in the ILASP task to learn initiated conditions for a specific fluent,
we omitted the mode bias #modeb(1, fluent_t). ILASP variables included color,
arm, and time, and delay was defined as a constant #constant(delay, 1..N)
to reduce the size of the search space. The maximum body length of axioms is limited to
three.

5.2 Experimental setup: generation of examples

The training and testing examples were extracted from videos of a human or the robot per-
forming the target task; we used similar videos in our prior work (Ginesi et al. 2020). When
a human performed the task, all four rings were on grey pegs, and had to be transferred
between the two arms before being placed on suitable colored pegs. Hence, all actions
mentioned in Sect. 3 appeared in the videos. Figure 3 shows screenshots of the initial states
of the task, when performed by the robot, focusing on scenarios that are useful to learn

�����(�..�).

����(��, ��, �) ∶ −����(��), ����(��), �����(�), �� = �� + �.

���������(������, �) ∶ −������_t

Machine Learning

1 3

previously unknown knowledge about the task and the domain. For example, in Fig. 3a the
transfer of the blue ring failed, and PSM2 had to re-open its gripper before moving to the
blue ring again; this scenario can be used to learn the constraint encoded by Statement 3c.
In a similar manner, the blue and red pegs were occupied in Fig. 3b and one of these pegs
had to be freed to complete the task; this scenario can be used to learn the axiom encoded
by Statement 3d. Finally, Fig. 3c corresponds to the scenario that requires concurrent (i.e.,
parallel) movement of the two arms.

From each video, we extracted geometric features from each image (i.e., frame) of the
videos using standard (color and shape) image segmentation algorithms. We matched these
features semantically to the corresponding fluents; this is the same approach used in our
previous work (Ginesi et al. 2020). In this process, we also exploited known transforms
between frames of the PSMs and the RGB-D cameral these transforms were obtained from
the calibration method described in Roberti et al. (2020). We then labeled each frame in
the video with the recognized fluents and action being executed. This process was repeated
in all the videos to generate the set of labeled examples that serves as the input to our
approach to learn previously unknown axioms corresponding to executability conditions
(Statement 3), action preconditions (Statement 1), and action effects (Statement 4). The
target axioms define logical relations between atoms describing actions and domain flu-
ents; the corresponding examples will only contain these atoms. We next describe the setup
for these types of axioms.

5.2.1 Action preconditions and executability conditions

Since all atoms in the axioms corresponding to the preconditions and executability condi-
tions of actions refer to the same timestep t (Sects. 3.1, 3.2), we omitted the timestep in
the literals to reduce the number of variables in the search space and speed up learning. For
each timestep, we defined the positive examples as CDPIs of the form ⟨einc, eexc,C⟩ , where
einc was the executed action, C contained the atoms of the fluents describing the environ-
mental state, and eexc = � . We also specified actions that could not occur at each timestep,
simulating knowledge from an expert designer analyzing the video under consideration.
We then defined negative examples with forbidden actions in einc and eexc = � . Although
it is possible to add forbidden actions in the set eexc in the positive examples, the fact that
ILASP learns through brave induction from positive examples (see Sect. 4) implies there is
no guarantee that actions in eexc will always be excluded by the solution hypothesis. On the
contrary, negative examples are cautiously entailed by adding executability conditions to
the hypothesis set to ensure that the learned axioms are reliable. As an illustrative example,
consider the scene in Fig. 3a. The first action moves PSM1 towards the red ring, providing
a positive example:

Fig. 3 Screenshots of initial states of surgical robot executing action sequences; information extracted from
the corresponding images were used for experimental evaluation

 Machine Learning

1 3

 At the same time, it is not possible to move PSM1 to the blue ring, providing the negative
example:

 To reduce the complexity of the learning task, we omitted redundant examples, i.e., exam-
ples that only differ in the grounding of variables in the atoms. For example, in the sce-
nario in Fig. 3c, both arms moved to a ring (PSM1 moved to blue ring, PSM2 moved to
yellow one) at t=1. This generated two examples that differ not in context but only in the
grounding of move(A, R, C); only one example was added. Overall, we generated 8
positive examples and 8 negative examples for move(A, P, C); 9 positive examples
and 20 negative examples for move(A, R, C); 2 positive examples and 1 negative
example for move(A, center, C); 11 positive examples for grasp(A, R, C); 10
positive examples and 4 negative examples for release(A); and 1 positive example for
extract(A, R, C).

5.2.2 Action effects

Since atoms in axioms corresponding to action effects do not share the same timestep
(Sect. 3.3), examples for these axioms must account for the temporal aspects. Since our
formulation includes predicates inspired by event calculus, we generated two examples
for each fluent for each task execution, one each for the initiated and the termi-
nated axioms of this fluent. Only positive examples were considered since they would
not be used to learn executability conditions (see above). Examples were CDPIs of the
form ⟨einc, eexc,C⟩ , where einc was the set of initiated (or terminated) conditions
at all timesteps, while eexc was the set of initiated (or terminated) conditions
that did not hold at all timesteps. The context C was the task history, i.e., the set of
atoms corresponding to actions and fluents that were true at all timesteps. The set eexc
was needed to guarantee that only relevant causal laws were learned, given that positive
examples are subject to brave induction—see Definition 2. Consider the scene in Fig. 3b
as an illustrative example. For the fluent at(A, R, C, t), the positive example
(considering only the initiated condition for simplicity) is shown below, with the
atoms corresponding to the set eexc underlined:

#���{���, {����(����, �, ���)}, {},

{���������(����, �, ���), ���������(����, �, ����),

���������(����, , ���), ���������(����, , ����),

���������(����, , �����), ���������(����, ,
����),

���������(����, , ���
), ���������(����, , ���
),

��(�, ���, , ���
)}}

#���{���, {����(����, �, ����)}, {},

{��������(����, �, ���), ��������(����, �, ����),

��������(����, �, ���), ��������(����, �, ����),

��������(����, �, �����), ��������(����, �,
����),

��������(����, �, ���
), ��������(����, �, ���
),

��(�, ���, �, ���
)}}

Machine Learning

1 3

 As before, we omit redundant examples for action effects. Overall, we generated 1
example for the initiated (equivalently, terminated) condition for closed_
gripper(A); 2 examples for in_hand(A, R, C); 1 example for at(A, center);
2 examples for on(R, C1, P, C2); and 3 examples for at(A, O, C).

5.3 Experimental results

Next, we describe and discuss the experimental results1; these results were obtained on a
PC with 2.6 GHz Intel Core i7 processor and 16 GB RAM.

5.3.1 Preconditions and executability conditions

We begin by describing the results for learning the action preconditions and executability
conditions. The learned action preconditions are as follows:

arm(A) is needed only for parallel execution of the task, see Sect. 3.1.
Statement 12 matches the action preconditions in Statement 1. Note that the ILASP

learning task for any given action only provides the aggregate rule for the precondition
of that action, e.g., 0 {move(A, R, C) : reachable(A, R, C)} 1. In State-
ment 12, the preconditions for all the actions are compacted into a single aggregate rule,
which allows the agent to choose at most one of the available actions when solving the task
planning problem. Moreover, the temporal variable is manually added to all atoms.

Next, the learned executability constraints obtained from the ILASP learning tasks for
all actions are as follows:

#���{���,

{���������(��(����, �, ���, �)), ���������(��(����, �, ���, �)), ...},

{���������(��(����, �, ���, �)), ���������(��(����, �, ���, �)), ...},

{����
����(����, �, ���, _), ����
����(����, �, ���, _),

����
����(����, 	, ���, _), ����
����(����, 	, ���, _),

����
����(����, 	, �����, _), ����
����(����, 	, ������, _),

����
����(����, 	, ����, _), ����
����(����, 	, ����, _),

��(�, ���, 	, ���, �), ��(�, ���, 	, ���, �), ...}}

(12)

�{����(�, �, �, �) ∶ ���������(�, �, �, �);

����(�, ������, �, �) ∶ ��_����(�, , �, �);

�������(�, , �, �) ∶ ��_����(�, , �, �);

���
	(�, , �, �) ∶ ��(�, , �, �);

�����
�(�, �) ∶ ��_����(�, , �, �)}� ∶ −���(�).

(13a)∶ −����(�, �, ��, �), ��_����(�, �, �, �), ��(�, �, �, ��, �).

1 Files available: https:// gitlab. com/ dan11 694/ ilp- for- task- knowl edge- learn ing. git.

https://gitlab.com/dan11694/ilp-for-task-knowledge-learning.git

 Machine Learning

1 3

 Note that the timestep variable is added to each atom after it is learned. Statements 13a–c
represent the same conditions as in Statements 3c, 3a and 3b respectively; forbidding
motion when both arms hold the same ring is equivalent to forbidding motion when the
arm which cannot reach the peg is holding the ring after transfer. Statements 13d,e match
the constraints in Statements 3d,e. Note that Statement 13b contains placeholders in the
action atom. In fact, executability conditions are learned through a separate ILASP learn-
ing task for each action, considering only examples that are relevant to that action. This
results in the following executability condition without the action fluent (of moving to a
peg):

This condition cannot be satisfied when combined with the set of axioms for the other
actions. Hence, we add the action atom with placeholders to relate this condition to the
action of moving to a peg. These placeholders help ensure the generality of the learned
conditions.

Table 1 shows the time taken to learn the preconditions and executability conditions
for each action, and compares the length of the learned axioms with the original ASP
encoding of the domain. Action move(A, P, C) has the largest learning time, the
largest axiom length, and the largest number of variables in the axioms; more time is
hence needed to search the set of hypotheses and find the correct one. Performance is
also influenced by the number and type (i.e., positive, negative) of examples, e.g., the
learning time for the release action is more than that of the grasp action that has
more variables because release has four negative examples while grasp has none.
An overall reduction from 26 to 24 is obtained in the length of the axioms using the
ILASP-based approach. This reduction is based on the ability of ILASP to find shorter

(13b)∶ −����(_, �, _, �), ��_����(�, �, �, �), ��� ���������(�, �, �, �).

(13c)∶ −����(�, ������, �, �), ��(�, �, �, ��, �).

(13d)∶ −����(�, �, �, �), ������_�������(�, �).

(13e)∶ −��(�, ��, �, �, �), ����(�, �, �, �).

∶ −��_����(�, �, �, �), ��� ���������(�, �, �, �).

Table 1 Quantitative results of
the ILASP task for preconditions
and executability conditions

The lengths of original and learned axioms are compared, and the
learning time is shown (as computed by ILASP)

Actions Original
(length)

Learned
(length)

Time (sec)

move(A, R, C) 4 4 0.49
move(A, P, C) 11 10 49.17
move(A, center, C) 5 4 0.09
extract(A, R, C) 2 2 0.06
grasp(A, R, C) 2 2 0.09
release(A) 2 2 0.79
Total 26 24 50.69

Machine Learning

1 3

axioms connecting actions and environmental conditions, discovering logical relations
that are not intuitive for a human manually encoding the domain and the task.

5.3.2 Effects of actions

The learned axioms corresponding to the effects of actions, after replacing prev(T1,
T2, 1) with the more compact representation of the temporal variable in Clingo’s syntax,
includes the following axioms related to the initiated relation:

 Note that ILASP initially finds the following axiom corresponding to the initiated
relation for fluent closed_gripper(A):

This axiom is found because the execution of a grasp action sets the value of both of
these fluents to be true. So we split any such axioms such that the fluents are related to the
corresponding actions, as shown in Statement 14a and Statement 14b. Another point of
interest is that Statement 14c is learnt using intermediate predicate invention. In fact, the
ILASP2i algorithm used in this paper returns the partial hypothesis after evaluation of each
example, particularly when it is unable to find a valid hypothesis for all examples at the
first try; this is due to the constraint we imposed on the length of body of axioms to limit
the search space for computational efficiency. In this case, the partial hypothesis is:

This hypothesis only covers examples in which a ring is placed on the same-colored peg,
but it does not cover scenarios in which a ring has to be placed on a grey peg (Figure 3b).
We add this partial hypothesis as an axiom in the background knowledge:

and we modify the mode bias to include flag in the search space. ILASP is then able
to find the correct axiom. Notice that increasing the maximum axiom length in the

(14a)���������(��_����(�, �, �), �) ∶ −�����(�, �, �, � − �).

(14b)���������(������_�������(�), �) ∶ −�����(�, �, _, � − �).

(14c)
���������(��(�, ��, �, ��), �) ∶ −��_����(�, �, ��, � − �),

��(�, �, ��, � − �), �������(�, � − �).

(14d)���������(��(�, �, �), �) ∶ −����(�, �, �, � − �).

(14e)
���������(��(��, �, �), �) ∶ −����(��, ������, �, � − �),

���������(��, ��).

(14f)���������(��(�, �, �), �) ∶ −����(�, �, �, � − �).

(14g)���������(��(�, ������), �) ∶ −����(�, ������, _, � − �).

(15)���������(������_�������(�), �) ∶ −��_����(�, �, �, �).

���������(��(�, �, �, �), �) ∶ −�������(�, � − �), ��(�, �, �, � − �).

(16)����(�, �, ��, ��) ∶ −�������(�, ��), ��(�, �, �, ��), ����(��, ��, �).

 Machine Learning

1 3

hyper-parameters would lead to the same result without intermediate predicate invention,
though increasing the search space.

Note that the axioms learned also include statements corresponding to the termi-
nated relation:

 Recall that Sect. 5.2.2 had highlighted the need to include non-observed fluents while
learning causal laws. As an example, consider the initiated condition for the fluent
at(A, R, C). Excluding non-occurring fluents from examples generates the following
initiating axiom:

which does not always hold and inverts the causal relation between body and head of a
rule.

5.3.3 Validation of learned axioms

We validated the learned axioms in simulated scenarios that mimic challenging environ-
mental conditions for the ring transfer task. We generated 1000 scenarios by considering
all possible combinations of four rings on the peg base, with the constraint that all rings
need to be placed on a peg at the beginning. For each scenario, both sequential and par-
allel execution of the task were executed; overall, all available actions in the domain are
included in the dataset of executions for proper validation of all axioms. We set a maxi-
mum limit of 200s for plan computation. This is because plan computation can take a long
time with the manually-encoded original set of axioms shown in Sect. 3. The learned axi-
oms provide a better encoding; once learned, they were used to replace the corresponding
axioms from the original set.

Including the learned axioms discussed in the last few sections does not automati-
cally support the computation of a plan in all the simulated scenarios; some knowledge
may be missing in certain scenarios depending on the learning examples presented. So,
we identified the axioms that affect the plan computation, iteratively omitting axioms for
each domain fluent (effects of actions) and each action (preconditions and executability

(17a)
����������(��_����(�, �, �), �) ∶ −�������(�, � − �),

��_����(�, �, �, � − �).

(17b)����������(������_�������(�), �) ∶ −�������(�, � − �).

(17c)
����������(��(�, ��, �, ��), �) ∶ −��_����(�, �, ��, � − �),

��(�, ��, �, ��, � − �).

(17d)����������(��(�, �, �), �) ∶ −�������(�, �, �, � − �).

(17e)
����������(��(��, �, �), �) ∶ −��(��, �, �, �), ��(��, ������, �),�������(��, �).

(17f)����������(��(�, �, �), �) ∶ −��(�, �, �, � − �), �����(�, �, ��, �).

(17g)
����������(��(��, ������), �) ∶ −��(��, ������, _),����(��, �, �, �), ����(��, �, �, �).

���������(��(�, �, �), �) ∶ −��_����(�, �, �, � + �).

Machine Learning

1 3

constraints). We found that Statements 17b-e-f were the bottleneck for plan computation.
Hence, we ran a new ILASP task for corresponding fluents, i.e., at(A, O, C) and
on(R, C1, P, C2), removing Statements 17b-e-f from the search space. This resulted
in the following final set of axioms related to the terminated relation (with the new axi-
oms underlined), which then allowed plans to be computed for all the simulated scenarios:

 Tables 2, 3 show the learning performances for initiated (Statements 14) and the
new set of terminated axioms. For the closed_gripper(A) fluent, the learning
time was the same as that for in_hand(A, R, C) because of the semantic equiva-
lency between them—see discussion of Statement 15. For fluents on(R, C1, P, C2),
at(A, O, C), and at(A, center), the initiating and terminating axioms required
most of the overall learning time because the target hypothesis for these axioms was bigger
than that of the other axioms. Another observation was that the original ASP encoding for
the preconditions, executability conditions, and effects contains more axioms than learned

(18a)
����������(��_����(�, �, �), �) ∶ −�������(�, � − �),

��_����(�, �, �, � − �).

(18b)����������(������_�������(�), �) ∶ −�������(�, � − �).

(18c)
����������(��(�, ��, �, ��), �) ∶ −��(�, ��, �, ��, � − �),�������(�, �, ��, � − �).

(18d)����������(��(�, �, �), �) ∶ −�������(�, �, �, � − �).

(18e)����������(��(�, �, �), �) ∶ −��(�, �, �, � − �), �������(�, � − �).

(18f)����������(��(�, �, �), �) ∶ −��(�, �, �, � − �),����(�, ������, �, � − �).

(18g)����������(��(�, �, �), �) ∶ −��(�, �, �, � − �), ��(�, �, ��, �).

(18h)
����������(��(��, ������), �) ∶ −��(��, ������, _), ����(��, �, �, �), ����(��, �, �, �).

Table 2 Quantitative results for
axioms of action effects in the
context of initiated

We compare the length of the original axioms with that of the learned
axiom; we also show the learning time returned from ILASP
Adding new predicate in Statement 16 to the background knowledge.

Actions Original
(length)

Learned
(length)

Time (sec)

at(A, R, C) 6 5 17.77
at(A, P, C) 2 2 24.89
at(A, center) 2 2 13.50
in_hand(A, R, C) 2 2 10.15
on(R, C1, P, C2) 4 4 67.06
closed_gripper(A) 2 2 10.15
Total 18 17 143.52

 Machine Learning

1 3

ones, e.g., the condition for terminating at(A, P, C) is significantly shorter. In fact, a
comparison of Statements 18g and 7f-h indicates that ILASP finds a single axiom describ-
ing the terminated condition, connecting fluents instead of actions, which is different
from the statements encoded by a human designer.

Figures 4 and 5 show the comparison between learned and original ASP programs for
the sequential and parallel task execution respectively. We specifically compared the size
of the plans returned by the two ASP programs, and the plan computational time, in the
simulated scenarios. To generate these figures, data collected from these simulated sce-
narios were processed first. We sorted all scenarios according to the size of the plan gen-
erated by the original ASP encoding, with plan size measured in terms of the number of
actions in the plan; this resulted in several clusters of scenarios. For each scenario, we
computed the size of the plan generated with the learned ASP encoding. Then the mean
and standard deviation of plan length with the learned ASP encoding were computed for
each cluster of scenarios, and compared with the plan length with the original ASP encod-
ing (top part of Figs. 4, 5). We also computed the mean and standard deviation of planning

Table 3 Quantitative results for
axioms of action effects in the
context of terminated

We compare the length of the original axioms with that of the learned
axiom; we also show the learning time returned from ILASP

Actions Original
(length)

Learned
(length)

Time (sec)

at(A, R, C) 10 8 18.23
at(A, P, C) 10 3 24.79
at(A,center) 6 4 20.86
in_hand(A, R, C) 3 3 10.76
on(R, C1, P, C2) 3 3 92.36
closed_gripper(A) 2 2 10.76
Total 34 23 177.76

Fig. 4 Comparison between learned and original axioms in simulation for scenarios that involve sequential
execution of actions

Machine Learning

1 3

time for each cluster of scenarios, both for original and learned ASP encoding, to obtain
one pair of points in the bottom part of Figs. 4, 5. The results indicated that for scenarios
that considered only the sequential execution of actions, plans computed with the learned
ASP program are of similar length to those with the original ASP program. With scenarios
that considered the parallel execution of actions, plans computed with the learned ASP
program were slightly longer than those with the original ASP program.

Next, when we compared the planning time, the mean and standard deviation were signifi-
cantly lower with the learned ASP program (and sequential action execution) in comparison
with the original ASP program. This was mainly due to the shorter axioms found by ILASP.
For example, the average planning time for the sixth, ninth and twelfth clusters was reduced
by 100s; such a reduction is important for practical use of logic programming to surgery sce-
narios. Such a reduction was not observed in the scenarios with parallel execution of actions.
We think this may be because the planning time (with parallel execution) was significantly
lower than with sequential execution of actions, both for the learned and original ASP pro-
grams—see the relaxed choice encoded by Statement 2. Also, the computational time was
similar for the original and learned ASP programs in this case. Note that one cluster of six sce-
narios had null (i.e., empty) plan size with sequential action execution and the original ASP
program; this was because it was not possible to compute a plan within the maximum allowed
time; the corresponding planning time was set to a maximum value of 600s, which was higher
than the maximum allowed planning time, for visualization convenience. With the learned
program, the plan could not be found in only one execution; the corresponding average plan-
ning time in the bottom part of Fig. 4-bottom is thus high but not as high as that with the origi-
nal ASP program. The starting cluster of the failed attempts to compute the plan determines
the initial apparent decrease in the plan computation time for sequential action execution. For
the scenarios involving parallel action execution, the computational time rose with the plan
size after the first cluster. This is reasonable since longer plans are generated in more complex
conditions (e.g., colored pegs are occupied or more transfer of rings).

Fig. 5 Comparison between learned and original axioms in simulation for scenarios that involve parallel
execution of actions

 Machine Learning

1 3

6 Conclusion

In this paper, we have presented an ILP-based approach for surgical task knowledge learning.
Our method can cope with multiple issues of interest in surgical scenarios, such as the unavail-
ability of large training datasets and the need for explainable surgical task description. We
have used a benchmark task for training surgeons, the ring transfer executed with the VinciⓇ
robot, as the illustrative task. Given a set of only four incomplete executions of the task from
the human and the robot, we have shown that it is possible to fast learn the axioms in ASP
syntax encoding actions and their relations with the environment, using inductive learning
based on the ILASP tool. In addition, we have separated the learning tasks for different parts
of the ASP encoding, and proposed a systematic learning approach that can be extended to
other robot tasks. This separation of parts of the encoding supports incremental refinement of
the knowledge (i.e., axioms) and the associated search space.

We evaluated our approach in the context of simulated scenarios of challenging conditions
for the ring transfer task; we considered both sequential and parallel action execution. With
the learned ASP encoding, performance is comparable or only slightly worse than that with
the original ASP encoding in terms of the size of the plans found. We also examined the plan
computation time, which affects the real-time execution on a physical robot in the surgery
domain. The experimental results indicated the ability to discover semantic relations (between
atoms) that were not in the original ASP encoding provided by the human designer; this
results in shorter axioms and also significantly reduces the planning time in certain scenarios.
There are some differences in performance between scenarios that involve sequential action
execution and those that involve parallel action execution; these differences will be explored
further in future work. The validation on an extensive set of simulated scenarios has also evi-
denced the need for refinement of initially learned axioms. This shows that initially provided
examples were not “good” enough to learn adequate ASP axioms for complex instances of the
ring transfer task.

A disadvantage of our method is the need for labeled executions of the target task, which
may limit the scalability of this approach to more complex surgical procedures. Our ongo-
ing research is focused on the unsupervised segmentation of actions and fluents from videos
and kinematic recordings (Meli and Fiorini 2021), which is an open problem in the surgical
domain (Krishnan et al. 2017; van Amsterdam et al. 2019). We are also integrating the frame-
work for automated task execution presented in Ginesi et al. (2020) with our ILASP-based
framework, following an approach similar to Calo et al. (2019). This will allow an expert
human to supervise the learning system, defining the positive and negative examples in real-
time for online refinement of ASP task knowledge.

Funding Open access funding provided by Università degli Studi di Verona within the CRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/

Machine Learning

1 3

References

Alrajeh, D., Ray, O., Russo, A., & Uchitel, S. (2006). Extracting requirements from scenarios with ILP.
In International Conference on Inductive Logic Programming (pp. 64–78). Berlin, Heidelberg:
Springer.

Balduccini, M. (2007). Learning action descriptions with A-prolog: Action language C. In: AAAI Spring
symposium on logical formalizations of commonsense reasoning.

Berthet-Rayne, P., Power, M., King, H., & Yang, G.Z. (2016). Hubot: A three state human-robot collabora-
tive framework for bimanual surgical tasks based on learned models. In 2016 IEEE International con-
ference on robotics and automation (ICRA) (pp. 715–722), IEEE.

Blum, T., Padoy, N., Feußner, H., & Navab, N. (2008). Modeling and online recognition of surgical phases
using hidden markov models. In International conference on medical image computing and computer-
assisted intervention (pp. 627–635) Springer.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., et al. (2020). Asp-core-2
input language format. Theory and Practice of Logic Programming, 20(2), 294–309.

Calo, S., Manotas, I., de Mel, G., Cunnington, D., Law, M., Verma, D., et al. (2019). Agenp: An asgrammar-
based generative policy framework. In S. Calo, E. Bertino, & D. Verma (Eds.), Policy-based auto-
nomic data governance (pp. 3–20). Berlin: Springer.

Camarillo, D. B., Krummel, T. M., & Salisbury, J. K., Jr. (2004). Robotic technology in surgery: Past, pre-
sent, and future. The American Journal of Surgery, 188(4), 2–15.

Charrière, K., Quellec, G., Lamard, M., Martiano, D., Cazuguel, G., Coatrieux, G., & Cochener, B. (2017).
Real-time analysis of cataract surgery videos using statistical models. Multimedia Tools and Applica-
tions, 76(21), 22473–22491.

Cropper, A., & Muggleton, S. H. (2019). Learning efficient logic programs. Machine Learning, 108(7),
1063–1083.

De Raedt, L., & Kersting, K. (2008). Probabilistic inductive logic programming. In L. De Raedt, P. Frasconi,
K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming (pp. 1–27). Berlin:
Springer.

Dergachyova, O., Morandi, X., & Jannin, P. (2018). Knowledge transfer for surgical activity prediction.
International journal of computer assisted radiology and surgery, 13(9), 1409–1417.

Erdem, E., & Patoglu, V. (2018). Applications of ASP in robotics. Kunstliche Intelligenz, 32(2–3), 143–149.
Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., & Thiele, S. (2008). A user’s guide to

gringo, clasp, clingo, and iclingo.
Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer set solving in practice. Synthesis

lectures on artificial intelligence and machine learning. California: Morgan Claypool Publishers.
Gelfond, M., & Inclezan, D. (2013). Some properties of system descriptions of AL

d
 . Journal of Applied

Non-Classical Logics, Special Issue on Equilibrium Logic and Answer Set Programming, 23(1–2),
105–120.

Gil, Y. (1994). Learning by experimentation: Incremental refinement of incomplete planning domains. In
International conference on machine learning (pp. 87–95), New Brunswick, USA.

Ginesi, M., Meli, D., Roberti, A., Sansonetto, N., & Fiorini, P. (2020). Autonomous task planning and situa-
tion awareness in robotic surgery. In International conference on intelligent robots and systems (IROS)
(pp. 3144–3150).

Hong, M., & Rozenblit, J.W. (2016). Modeling of a transfer task in computer assisted surgical training. In
Proceedings of the modeling and simulation in medicine symposium, (pp. 1–6).

Kakas, A.C., & Michael, A. (1995). Integrating abductive and constraint logic programming. In ICLP (pp.
399–413).

Katzouris, N., Artikis, A., & Paliouras, G. (2015a). Incremental learning of event definitions with inductive
logic programming. Machine Learning, 100(2–3), 555–585.

Katzouris, N., Artikis, A., & Paliouras, G. (2015b). Incremental learning of event definitions with inductive
logic programming. Machine Learning, 100(2–3), 555–585.

Katzouris, N., Artikis, A., & Paliouras, G. (2019). Parallel online event calculus learning for complex event
recognition. Future generation computer systems, 94, 468–478.

Kowalski, R., & Sergot, M. (1989). A logic-based calculus of events. In J. W. Schmidt & C. Thanos (Eds.),
Foundations of knowledge base management (pp. 23–55). Berlin: Springer.

Krishnan, S., Garg, A., Patil, S., Lea, C., Hager, G., Abbeel, P., & Goldberg, K. (2017). Transition state
clustering: Unsupervised surgical trajectory segmentation for robot learning. The International Jour-
nal of Robotics Research, 36(13–14), 1595–1618.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins, O. C., Lebiere, C., et al. (2017). Interactive task
learning. IEEE Intelligent Systems, 32(4), 6–21.

 Machine Learning

1 3

Lalys, F., & Jannin, P. (2014). Surgical process modelling: A review. International Journal of Computer
Assisted Radiology and Surgery, 9(3), 495–511.

Law, M. (2018). Inductive learning of answer set programs. PhD thesis, University of London.
Law, M., Russo, A., & Broda, K. (2016). Iterative learning of answer set programs from context dependent

examples. Theory and Practice of Logic Programming, 16(5–6), 834–848.
Law, M., Russo, A., & Broda, K. (2018). The complexity and generality of learning answer set programs.

Artificial Intelligence, 259, 110–146.
Loukas, C., & Georgiou, E. (2013). Surgical workflow analysis with gaussian mixture multivariate autore-

gressive (gmmar) models: A simulation study. Computer Aided Surgery, 18(3–4), 47–62.
Mack, M. J. (2001). Minimally invasive and robotic surgery. Journal of American Medical Association,

285(5), 568–572.
Meli, D., & Fiorini, P. (2021). Unsupervised identification of surgical robotic actions from small non homo-

geneous datasets.
Meli, D., Fiorini, P., & Sridharan, M. (2020). Towards inductive learning of surgical task knowledge: A pre-

liminary case study of the peg transfer task. Procedia Computer Science, 176, 440–449.
Mizoguchi, F., Ohwada, H., Nishiyama, H., Yoshizawa, A., & Iwasaki, H. (2015). Identifying driver’s cog-

nitive distraction using inductive logic programming. In Proceedings of the 25th international confer-
ence on inductive logic programming (ILP ‘15).

Mota, T., & Sridharan, M. (2019). Commonsense reasoning and knowledge acquisition to guide deep learn-
ing on robots. In Robotics science and systems, Freiburg: Germany.

Mota, T., & Sridharan, M. (2020). Axiom learning and belief tracing for transparent decision making in
robotics. In AAAI Fall symposium on artificial intelligence for human-robot interaction: Trust and
explainability in artificial intelligence for human-robot interaction.

Moustris, G. P., Hiridis, S. C., Deliparaschos, K., & Konstantinidis, K. (2011). Evolution of autonomous
and semi-autonomous robotic surgical systems: A review of the literature. The International Journal of
Medical Robotics and Computer Assisted surgery, 7(4), 375–392.

Moyle, S., & Muggleton, S. (1997). Learning programs in the event calculus. In International conference on
inductive logic programming (pp. 205–212), Springer.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8(4), 295–318.
Neumuth, T., Strauß, G., Meixensberger, J., Lemke, H.U., & Burgert, O. (2006). Acquisition of process

descriptions from surgical interventions. In International conference on database and expert systems
applications (pp. 602–611), Springer.

Ng, R., & Subrahmanian, V. S. (1992). Probabilistic logic programming. Information and Computation,
101(2), 150–201.

Ray, O. (2009). Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3), 329–340.
Roberti, A., Piccinelli, N., Meli, D., Muradore, R., & Fiorini, P. (2020). Improving rigid 3-d calibration for

robotic surgery. IEEE Transactions on Medical Robotics and Bionics, 2(4), 569–573. https:// doi. org/
10. 1109/ TMRB. 2020. 30336 70.

Sakama, C., & Inoue, K. (2009). Brave induction: A logical framework for learning from incomplete infor-
mation. Machine Learning, 76(1), 3–35.

Schüller, P., & Benz, M. (2018). Best-effort inductive logic programming via fine-grained cost-based
hypothesis generation. Machine Learning, 107(7), 1141–1169.

Sridharan, M., & Meadows, B. (2018). Knowledge representation and interactive learning of domain knowl-
edge for human-robot collaboration. Advances in Cognitive Systems, 7, 77–96.

Tao, L., Elhamifar, E., Khudanpur, S., Hager, G. D., & Vidal, R. (2012). Sparse hidden markov models for
surgical gesture classification and skill evaluation. In International conference on information process-
ing in computer-assisted interventions (pp. 167–177) Springer.

van Amsterdam B, Nakawala H, De Momi E, Stoyanov D (2019) Weakly supervised recognition of surgical
gestures. In 2019 International conference on robotics and automation (ICRA) (pp. 9565–9571) IEEE.

Vidovszky, T. J., Smith, W., Ghosh, J., & Ali, M. R. (2006). Robotic cholecystectomy: Learning curve,
advantages, and limitations. Journal of Surgical Research, 136(2), 172–178.

Yang, G. Z., Cambias, J., Cleary, K., Daimler, E., Drake, J., Dupont, P. E., et al. (2017). Medical robotics-
regulatory, ethical, and legal considerations for increasing levels of autonomy. Science Robotics, 2(4),
8638.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/TMRB.2020.3033670
https://doi.org/10.1109/TMRB.2020.3033670

Machine Learning

1 3

Authors and Affiliations

Daniele Meli1 · Mohan Sridharan2 · Paolo Fiorini1

 Mohan Sridharan
 m.sridharan@bham.ac.uk

 Paolo Fiorini
 paolo.fiorini@univr.it

1 Department of Computer Science, University of Verona, strada Le Grazie 15, 37135 Verona, Italy
2 School of Computer Science, University of Birmingham, Edgbaston, Birmingham B152TT, UK

http://orcid.org/0000-0002-3162-388X

	Inductive learning of answer set programs for autonomous surgical task planning
	Abstract
	1 Introduction
	2 Related work
	3 Original ASP encoding of the ring transfer task
	3.1 Preconditions of actions
	3.2 Executability conditions
	3.3 Effects of actions

	4 ILP task under AS semantics
	5 Experiments in the ring transfer domain
	5.1 Background knowledge and search space
	5.1.1 Preconditions and executability conditions
	5.1.2 Effects of actions

	5.2 Experimental setup: generation of examples
	5.2.1 Action preconditions and executability conditions
	5.2.2 Action effects

	5.3 Experimental results
	5.3.1 Preconditions and executability conditions
	5.3.2 Effects of actions
	5.3.3 Validation of learned axioms

	6 Conclusion
	References

