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Abstract
The quality of robot-assisted surgery can be improved and the use of hospital resources 
can be optimized by enhancing autonomy and reliability in the robot’s operation. Logic 
programming is a good choice for task planning in robot-assisted surgery because it sup-
ports reliable reasoning with domain knowledge and increases transparency in the decision 
making. However, prior knowledge of the task and the domain is typically incomplete, and 
it often needs to be refined from executions of the surgical task(s) under consideration to 
avoid sub-optimal performance. In this paper, we investigate the applicability of inductive 
logic programming for learning previously unknown axioms governing domain dynamics. 
We do so under answer set semantics for a benchmark surgical training task, the ring trans-
fer. We extend our previous work on learning the immediate preconditions of actions and 
constraints, to also learn axioms encoding arbitrary temporal delays between atoms that are 
effects of actions under the event calculus formalism. We propose a systematic approach 
for learning the specifications of a generic robotic task under the answer set semantics, 
allowing easy knowledge refinement with iterative learning. In the context of 1000 simu-
lated scenarios, we demonstrate the significant improvement in performance obtained with 
the learned axioms compared with the hand-written ones; specifically, the learned axioms 
address some critical issues related to the plan computation time, which is promising for 
reliable real-time performance during surgery.
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1 Introduction

In the last few decades, robots have been used in operating rooms to assist surgeons 
in performing minimally invasive surgery, improving the precision of surgeons and the 
recovery time of patients (Mack 2001; Vidovszky et al. 2006). At present, surgeons use 
a console to tele-operate patient-side manipulators. One long-term goal of research in 
surgical robotics is the development of robot systems capable of executing a surgical 
operation, or at least a part of it, with minimal supervision of a human expert  (Cam-
arillo et  al. 2004; Moustris et  al. 2011). Such robot systems can boost safety, opti-
mize resource usage, and reduce patient recovery time, surgeon fatigue, and hospital 
costs  (Yang et  al. 2017). The complexity of surgical scenarios makes it difficult to 
encode comprehensive domain knowledge or provide many labeled training examples. 
Hence, autonomy requires the robot to reason with incomplete commonsense domain 
knowledge, and adapt automatically to variations in the surgical scenario and individ-
ual patients. In Ginesi et al. (2020) we proposed a framework for surgical task execu-
tion that integrated logic-based reasoning about task-level actions with adaptive motion 
planning and control. This task-level reasoning was based on Answer Set Programming 
(ASP), a non-monotonic logic programming paradigm (Gebser et al. 2012). Logic pro-
gramming can encode high-level specifications and constraints extracted from expert 
knowledge on the behavior of the robot system, in order to provide reliable operation in 
dynamic domains. Moreover, the non-monotonic logical reasoning capability of ASP, 
i.e., the ability to retract previously held beliefs, is important in robotics applications. A 
key limitation of our prior framework was that it assumed comprehensive knowledge of 
the task and domain in terms of domain attributes (e.g., object properties) and axioms 
governing domain dynamics (e.g., constraints, and action preconditions and effects). 
This is not feasible in practical robotics domains, especially in surgical scenarios that 
are characterized by high variability in the patient’s anatomy.

In this paper, we focus on the problem of learning previously unknown task-level 
knowledge from a small number of example executions of a benchmark surgical train-
ing task, the ring transfer task, executed with the VinciⓇ robot from Intuitive Surgical. 
We build on our recent proof of concept exploration of the use of inductive logic pro-
gramming (ILP) to learn previously unknown axioms governing domain dynamics in 
answer set semantics (Meli et al. 2020). In that work, learned axioms represented action 
preconditions and executability constraints, and learning was based on four example 
executions. In this paper, we significantly extend this idea to consider temporal rela-
tions between domain attributes, learning previously unknown axioms representing the 
delayed effects of actions. To do so, we reformulate the axioms in Ginesi et al. (2020) 
using the principles of event calculus, a state of the art temporal logic formalism to 
represent a system’s reaction to events (Kakas and Michael 1995; Kowalski and Sergot 
1989). This integration of ILP and event calculus supports fast learning with standard 
hardware resources.

The remainder of this paper is organized as follows. Section 2 reviews the state of the 
art in surgical process modeling and learning of domain knowledge. Next, Sect. 3 describes 
the ring transfer task and its original hand-written ASP encoding, introducing the new event 
calculus formalism for the effects of actions. Section 4 formalizes the ILP task under the 
answer-set semantics. Section 5 presents the results of evaluating our approach for learning 
axioms in simulated scenarios requiring coordination of different action sequences. Finally, 
Sect. 6 describes the conclusions and future research directions.
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2  Related work

Building a surgical process model (SPM) requires the designer to choose the level of gran-
ularity at which the task is to be analyzed. We use the definition of granularity (for surgical 
processes) provided in Lalys and Jannin (2014) and shown in Fig. 1. Learning an SPM for 
tasks involving motion is challenging since surgical gestures present high variability (Neu-
muth et al. 2006). Hence, statistical methods such as Markov models (Loukas and Geor-
giou 2013; Tao et al. 2012; Lalys and Jannin 2014) are typically used to infer a motion-
level SPM.

In this paper, we focus on learning SPMs at a coarser granularity, i.e. at the level of 
relations between activities (or actions) that constitute a surgical step or phase. An action 
is an elementary motion associated with semantics; it specifies, for example, the arm and 
the surgical tool to be used to perform this action. The sequence of actions is affected by 
the variations in the anatomical conditions. Bayesian networks (BNs) represent the state 
of the art for learning SPMs at this granularity (Blum et al. 2008; Charrière et al. 2017). 
Recurrent (deep) neural networks have also been explored, exhibiting improvement in the 
accuracy at the expense of increased computational effort during training  (Dergachyova 
et al. 2018). Since surgical tasks typically involve a transition between a sequence of states, 
a hidden Markov model has been used to model the surgical training task of ring trans-
fer, which involves cooperation between a human and a robot (Berthet-Rayne et al. 2016). 
However, even a simplified version of this training tasks required 80 labeled human execu-
tions for training, making scalability to more complex tasks challenging. Another key limi-
tation of many statistical methods is that they generate black-box models that do not pro-
vide any guarantees in terms of correctness and soundness, affecting the reliability of the 
surgical system. On the other hand, logic-based formalisms for representing and reasoning 
with domain knowledge inherently provide correctness guarantees (Neumuth et al. 2006), 
and they make the underlying reasoning more transparent. However, such logic-based for-
malisms for the ring transfer task have required comprehensive domain knowledge to be 
encoded a priori (Ginesi et al. 2020; Hong and Rozenblit 2016), which is difficult to do in 
more complex surgical scenarios.

There are many methods in AI for learning domain knowledge. Examples include 
the incremental revision of action operators represented in first-order logic  (Gil 1994), 
the expansion of a theory of actions to revise or inductively learn ASP system descrip-
tions (Balduccini 2007), and the combination of non-monotonic logical reasoning, induc-
tive learning, and relational reinforcement learning to incrementally acquire previously 
unknown actions and their preconditions and effects (Sridharan and Meadows 2018). Previ-
ously unknown axioms governing domain dynamics have also been learned using decision 
tree induction in a framework that combines ASP-based non-monotonic logical reason-
ing with deep learning for scene understanding (Mota and Sridharan 2019, 2020). These 
approaches may be viewed as instances of interactive task learning, a general framework 
for acquiring domain knowledge using labeled examples or reinforcement signals obtained 
from domain observations, demonstrations, or human instructions (Laird et al. 2017).

Fig. 1  Standard granularity levels of surgical processes, as described in Lalys and Jannin (2014)
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Our framework for learning domain knowledge uses ILP to learn previously unknown 
domain axioms represented as ASP programs. ILP was developed to support learning from 
a limited set of labeled examples (Muggleton 1991). It has been used by an international 
research community in different domains, e.g., to identify a driver’s cognitive stress and 
distraction (Mizoguchi et al. 2015); for event recognition in city transport (Katzouris et al. 
2015a); and to learn logic programs in robotics (Cropper and Muggleton 2019). ILP has 
also been successfully applied to the learning of programs based on the paradigm of event 
calculus  (Moyle and Muggleton 1997), but providing the event calculus specification of 
any non-trivial task or domain can be challenging. Methods have been developed for auto-
mated, scalable, and incremental learning of event calculus definitions (Alrajeh et al. 2006; 
Katzouris et al. 2019). ILP has also been used to support learning in non-monotonic logic 
programs (Law et al. 2018) and probabilistic logic programs (De Raedt and Kersting 2008). 
In complex domains such as surgical robotics, learning with probabilistic logics is compu-
tationally challenging (Ng and Subrahmanian 1992), but non-monotonic logical reasoning 
is still necessary. We thus choose to build on ILASP, an implementation of ILP for learning 
domain axioms under answer set semantics (Law 2018). ILASP provides key advantages in 
comparison with other ILP-based approaches for learning axioms. For example, it supports 
faster learning than Inspire (Schüller and Benz 2018), another system based on answer set 
semantics, because it has fewer hyper-parameters. Although ILASP (by itself) does not 
support Inspire’s ability to automatically create and generalize predicates to obtain shorter 
axioms, this limitation can be partially overcome with an iterative version of ILASP. In 
addition, it has been shown  (Law 2018) that ILASP is more general than XHAIL  (Ray 
2009), a state of the art tool for inductive learning of event calculus-based axioms, and its 
competitor ILED  (Katzouris et  al. 2015b). It also guarantees some appealing properties 
that are discussed in Sect. 4.

3  Original ASP encoding of the ring transfer task

Figure  2 shows the setup for the illustrative surgical training task of ring transfer. The 
objective is to place colored rings on pegs of the corresponding color using the two patient-
side manipulators (PSM1 and PSM2) of the VinciⓇ robot. Each PSM can grasp any reach-
able ring and place it on any reachable peg; reachability is determined by the relative 

Fig. 2  Setup for the ring transfer 
task. The dashed line marks the 
reachability regions for the two 
PSMs of the VinciⓇ robot
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position of rings and pegs with respect to the center of the base. Pegs can be occupied 
by other rings and must be freed before placing the desired ring on it. Also, rings may be 
on pegs or on the base in the initial state, i.e., some rings may need to be extracted before 
being moved.

We describe the ring transfer task in an established format for answer set programming 
(ASP) (Calimeri et al., 2020). ASP is a declarative language that can represent recursive 
definitions, defaults, causal relations, and constructs that are difficult to express in clas-
sical logic formalisms (Gebser et al. 2012). It encodes concepts such as default negation 
(negation by failure) and epistemic disjunction, e.g., unlike “ ¬a”, which implies that “a is 
believed to be false”, “not a” only implies “a is not believed to be true”, i.e., each literal 
can be true, false or unknown. ASP supports non-monotonic logical reasoning, i.e., adding 
a statement can reduce the set of inferred consequences. Modern ASP solvers support effi-
cient reasoning with large knowledge bases or incomplete knowledge, and are used by an 
international research community (Erdem and Patoglu 2018).

A domain’s description in ASP comprises a system description D and a history H  . 
D comprises a sorted signature Σ and axioms. Σ comprises basic sorts arranged hierar-
chically; statics, i.e., domain attributes whose values do not change over time; fluents, 
i.e., domain attributes whose values can be changed; and actions. Domain attributes and 
actions are defined in terms of the sorts of their arguments. Fluents can be inertial (i.e., 
those that obey inertia laws and whose values are changed directly by actions) or defined 
(i.e., those that do not obey inertia laws and whose values are not changed directly by 
actions). Variables and object constants are terms; terms with no variables are ground. A 
predicate of terms is an atom; it is ground if all its terms are ground. An atom or its nega-
tion is a literal. For the ring transfer task, statics include location (including instance 
center), object (with sub-sorts ring and peg), the robot’s arm (with instances 
psm1 and psm2), the color of each ring and peg (can take values: red, green, blue, yel-
low, grey), and time for temporal reasoning; and fluents include reachable(arm, 
object, color), in_hand(arm, ring, color), on(ring, color, peg, 
color), at(arm, center), closed_gripper(arm), and at(arm, object, 
color). Actions include move(arm, object, color), move(arm, center, 
color), grasp(arm, ring, color), extract(arm, ring, color) and 
release(arm). Given this Σ , axioms describing domain dynamics are first specified as 
statements in an action language, e.g., AL

d
  (Gelfond and Inclezan 2013), and then trans-

lated to ASP statements. Axioms define causal laws (i.e., action effects and preconditions), 
state constraints, and executability conditions (i.e., conditions under which certain actions 
are forbidden); some examples are provided later in this section. The domain’s history H  
is a record of statements encoding the observation of the values of particular fluents, and 
the execution of particular actions, at particular time steps.

To reason with domain knowledge, we construct the ASP program Π(D,H) that includes 
the signature, axioms of D , inertia axioms, reality checks, closed world assumptions for 
actions, observations and actions from H  , and helper statements (e.g., for goal definition, 
planning, and diagnostics). Planning, diagnostics, and inference can then be reduced to com-
puting answer sets of Π . An answer set (AS) describes a possible world in terms of the beliefs 
of an agent associated with Π . We use the Clingo solver  (Gebser et  al. 2008) to generate 
answer set(s) of ASP program(s). For the ring transfer task, we are primarily interested in 
atoms of actions, and a subset of the fluents and statics; for simplicity, we will only focus on 
these atoms in our description of Π(D,H) and its answer sets below. In our description, we 
will denote variables of specific sorts using capital letters (e.g., O for object, R for ring, P 
for peg, C for color, and A for arm), while constant values (e.g., specific instances of color 
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or location) will be represented in lower case (e.g., center or red). The axioms of the ring 
transfer task are described next.

3.1  Preconditions of actions

Preconditions are statements that need to hold true for the corresponding actions to be have 
the desired effect(s), i.e., they help define causal laws. We define preconditions and guess exe-
cuted actions of the domain with the following statement:

where 0 {a : b} 1 is an aggregate rule forcing the ASP solver to compute an answer 
set with at most one element a, given that b holds. Capital letters represent variables, “ _ ” 
is a placeholder for unused variables in the rules, and “t” refers to a discrete time step. 
Adding “t” as an additional argument is short hand that the corresponding action (flu-
ent) occurs (holds) at a particular time step, e.g., grasp(A, R, C, t) instead of 
occurs(grasp(A, R, C), t) implies that the robot arm A grasps ring R of color C 
at time t; a precondition for this action is that the arm should be at same position as ring R 
of color C. In a similar manner, we will use in_hand(A, R, C, t) interchangeably 
with holds(in_hand(A, R, C), t) to imply that arm A has ring R or color C at 
time t. We will also denote atoms with the argument t as atom

t
.

The use of an aggregate rule to define preconditions of actions, i.e., a statement such as 
�{������ ∶ ��� − ���������}� , constrains the number of elements that can be selected 
from a set. In this case, only one action can be executed at a time step, resulting in a sequential 
execution of actions. Since the robot has two arms, we also consider parallel execution of an 
action by each arm at each time step, revising Statement 1 as follows:

It is possible to combine the execution strategies, e.g., executing move(A, center, 
_, t) executes a motion primitive that moves both arms in parallel to transfer a ring from 
one arm to another.

3.2  Executability conditions

Executability conditions for the ring transfer task include the following: 

(1)

�{����(�, �, �, �) ∶ ���������(�, �, �, �);

����(�, ������, _, �) ∶ ��_����(�, , �, �);

�������(�, , �, �) ∶ ��_����(�, , �, �);

���
	(�, , �, �) ∶ ��(�, , �, �);

�����
�(�, �) ∶ ��_����(�, , _, �)}�.

(2)�{������ ∶ ��� − ���������}� ∶ −���(�).

(3a)
∶ −����(��, �, _, �), ��_����(��, �, �, �),

��_����(��, �, �, �), ��! = ��.

(3b)∶ −����(�, ������, _, �), ��_����(�, �, �, �),��(�, �, �, _, �).

(3c)∶ −����(�, �, _, �), ��_����(�, �, �, �), ��(�, �, �, _, �).
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 where ∶ − ≡ ← , and each statement can be viewed as having a ⊥ in the head, i.e., atoms 
on the right hand side of each statement cannot hold at the same time. These statements 
thus describe conditions under which certain actions should not be considered for execu-
tion. Statement  3a implies that neither arm can move if they are both holding the same 
ring (during transfer); Statements 3b,c implies that a ring which is still on a peg cannot be 
moved; Statement 3d implies that an arm cannot move to a ring if the gripper is closed; and 
Statement 3e specifies that an arm cannot move to an occupied peg—this does not prevent 
an arm from moving to a ring that is on a peg by executing move(A, R, C, t). The 
objective of the ring transfer task is to have all visible (i.e., reachable by any arm) rings on 
pegs of matching color; this is expressed as the following constraint:

3.3  Effects of actions

In our previous work, we assumed the effects of actions to be “instantaneous”, i.e., that 
they hold immediately after the action is executed and that these effects cease to hold at 
the subsequent time step (Ginesi et al. 2020). Here we consider a more realistic scenario 
by making the fluents inertial. Then, the inertia axioms ensure that fluents continue to hold 
their value until these values are changed explicitly, e.g., by action execution or a specific 
termination condition:

where F is an inertial fluent. In our illustrative ring transfer domain, effects are explicitly 
related to the corresponding actions as follows:

(3d)∶ −����(�, �, _, �), ������_�������(�, �).

(3e)∶ −����(�, �, �, �), ��(�, _, �, �, �).

∶ −���������(_, �, �, �), ���������(_, �, �, �), �����(�, �, �, �, �).

�����(�, � + �) ∶ −�����(�, �), ���¬�����(�, � + �).

¬�����(�, � + �) ∶ −¬�����(�, �), ��������(�, � + �).
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However, this formulation is challenging for ILP since it includes many default negations. 
To reduce the number of such default negation statements, we introduce relations inspired 
by work in event calculus. Event calculus was developed to represent and reason about 
events and their effects in a logic programming framework  (Kowalski and Sergot 1989). 
An event calculus program relates the properties of a domain to triggering events. In our 
case, we introduce two relations, initiated and terminated, to encode the initiating 
and terminating conditions (respectively) for each fluent. We then reformulate the inertia 
axioms as follows:

Next, we use these new relations to describe the effects of actions in the ring transfer 
domain as follows:

(4)

��_����(�, �, �, �) ∶ −�����(�, �, �, � − �).

��_����(�, �, �, �) ∶ −��_����(�, �, �, � − �), ����������(�, � − �).

������_�������(�, �) ∶ − �����(�, �, _, � − �).

������_�������(�, �) ∶ −������_�������(�, � − �), ��� �������(�, � − �).

��(�, ��, , ��, �) ∶ −��_����(�, �, ��, � − �),

��(�, , ��, � − �), �������(�, � − �).

��(�, ��, , ��, �) ∶ −��(�, ��, , ��, � − �), ��� �������(_, �, ��, � − �).

��(�, �, �, �) ∶ −
�	�(�, �, �, � − �).

��(�, , �, �) ∶ −
�	�(�, , �, � − �).

��(�, ������, �) ∶ −
�	�(�, ������, _, � − �)

��(�, �, �, �) ∶ −��(�, �, �, � − �), ��� 
�	�(�, �, �, � − �).

��(�, �, �, �) ∶ −��(�, �, �, � − �), ��� 
�	�(�, ������, � − �).

��(�, ������, �) ∶ −��(�, ������, � − �), ��� 
�	�(�, �, �, � − �).

��(�, ������, �) ∶ −��(�, ������, � − �), ��� 
�	�(�, ������, � − �).

(5)
�����(�, �) ∶ −���������(�, �).

�����(�, �) ∶ −�����(�, � − �), �������������(�, �).

(6)

���������(��_����(�, �, �), �) ∶ −�����(�, �, �, � − �).

���������(������_�������(�), �) ∶ −�����(�, �, _, � − �).

���������(��(�, ��, , ��), �) ∶ −��_����(�, �, ��, � − �),

��(�, , ��, � − �), �������(�, � − �).

���������(��(�, �, �), �) ∶ −��
�(�, �, �, � − �).

���������(��(�, , �), �) ∶ −��
�(�, , �, � − �).

���������(��(�, ������), �) ∶ −��
�(�, ������, _, � − �).

(7a)
����������(��_����(�, �, �), �) ∶ −�������(�, � − �),

��_����(�, �, �, � − �).

(7b)����������(������_�������(�), �) ∶ −�������(�, � − �).
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 As stated in Sect. 3.1, two actions can be executed in parallel under some conditions. For 
example, the execution of move(A, center, C) causes a different motion primitive 
to be executed concurrently on the two arms; the main arm A is eventually at the transfer 
location center, while the other arm is eventually at the grasping location of ring C. Two 
additional axioms are added to encode this effect:

4  ILP task under AS semantics

The task of learning the system description under AS semantics has been formulated as 
an ILP by other researchers; please see Law et al. (2018) for details. Here, we provide the 
relevant definitions suitably adapted to our work and domain. A generic ILP problem T  
under the AS semantics is defined as the tuple T = ⟨B, S

M
,E⟩ , where B is the background 

knowledge, i.e. a set of axioms in ASP syntax; S
M

 is the search space, i.e. the set of candi-
date ASP axioms that can be learned; and E is a set of examples. The goal of T  is to find a 
subset H ⊆ S

M
 such that H ∪ B ⊧ E.

We use the iterative version of ILASP2 algorithm, ILASP2i, in the ILASP tool  (Law 
2018) to learn axioms inductively from ASP-syntax examples. This algorithm optimizes 
the search process by focusing on incrementally satisfying only those examples which are 
not covered by B and the current partial hypothesis (Law et al. 2016). In ILASP, examples 
are considered to be partial interpretations defined as follows.

Definition 1 (Partial interpretation) Let P be an ASP program. Any set of grounded atoms 
that can be generated from axioms in P is an interpretation of P. Given an interpretation I 
of P, we say that a pair of subsets of grounded atoms e = ⟨einc, eexc⟩ is a partial interpreta-
tion extended by interpretation I if einc ⊆ I and eexc ∩ I = �.

(7c)
����������(��(�, ��, �, ��), �) ∶ −�������(_, �, ��, � − �),

�����(��), ��! = ��.

(7d)
����������(��(�, �, �), �) ∶ −����(�, �, ��, � − �), �����(�), ��! = �.

����������(��(�, �, �), �) ∶ −����(�, �, _, � − �), �����(�).

(7e)����������(��(�, �, �), �) ∶ −����(�, ������, _, � − �), �����(�).

(7f)����������(��(�, �, �), �) ∶ −����(�, �, ��, � − �), �����(�), �! = ��.

(7g)����������(��(�, �, �), �) ∶ −����(�, �, _, � − �), �����(�).

(7h)����������(��(�, �, �), �) ∶ −����(�, ������, _, � − �), �����(�).

(7i)����������(��(�, ������), �) ∶ −����(�, �, _, � − �).

(8)

���������(��(��, �, �), �) ∶ −����(��, ������, �, � − �), ��! = ��, ���(��).

����������(��(��, ������), �) ∶ −����(��, ������, _, � − �), ��! = ��, ���(��).
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Given this definition, ILASP solves a learning task defined as follows.

Definition 2 (ILASP learning task) The ILASP learning task T = ⟨B, S
M
,E⟩ is a tuple of 

background knowledge B, search space S
M

 and examples E = ⟨E+,E−⟩ such that E+ ( E− ) 
is the subset of positive (negative) examples. The goal of T  is to find H ⊆ S

M
 such that 

∀e ∈ E , e is a partial interpretation of the ASP program B ∪ H . If AS is an answer set of the 
ASP program H ∪ B , the following must hold:

The above definition introduces two different categories of examples: positive exam-
ples, which must be extended by at least one answer set of B ∪ H , and negative exam-
ples, which cannot be extended by any of the answer sets. In this sense, we say that 
ILASP bravely induces positive examples, and cautiously induces negative examples 
(Sakama and Inoue 2009). ILASP can learn action preconditions and effects from posi-
tive examples, and executability conditions from negative examples. In particular, we 
exploit the ability of ILASP to learn from context-dependent examples (partial interpre-
tations), as explained in Law et al. (2016).

Definition 3 (Context-dependent partial interpretation (CDPI)) A CDPI of an ASP 
program P with an interpretation I is a tuple e

c
= ⟨e,C⟩ , where e is a partial interpreta-

tion, and C is an ASP program called context. I is said to extend e
c
 if einc ∪ C ⊆ I and 

(eexc ∪ C) ∩ I = �.

Definition 4 (ILASP task with CDPIs) An ILASP learning task with CDPIs is a tuple 
T = ⟨B, S

M
,E⟩ , where E = ⟨E+,E−⟩ is a set of CDPIs with context C. We say that H ⊆ S

M
 

is a solution to T  if the following hold:

All examples (for ILASP learning task) considered in this paper are tuples of the 
form e = ⟨einc, eexc,C⟩ . This allows us to relate environmental fluents to actions when 
learning axioms for the task, thus capturing the dynamic nature of the illustrative ring 
transfer task.

ILASP allows to define the search space S
M

 with compact syntax, using mode bias to 
specify the atoms that can occur in the body and head of axioms (right- and left-hand 
side of an axiom respectively). In this paper, we consider two different kinds of learning 
tasks: one for preconditions and executability conditions and one for effects of actions. 
The specification of the mode bias for the two learning tasks will be presented in the 
next section. Another feature of ILASP is that it is designed to find the minimal H in the 
search space S

M
 . To explain this feature, we first define the length of an axiom.

Definition 5 (Length of an axiom) Let R be an axiom in an ASP program. The length of 
R , |R| , is defined as the number of atoms that appear in it. For an aggregate rule, i.e. a 
rule with an aggregate l {a1;a2;… ;a

n
} u in the head, the length of the head is defined as ∑u

i=l
i ⋅ n.

∀e ∈ E+ ∃AS s.t. B ∪ H ⊧ AS ∶ e is extended by AS

∀e ∈ E− ∄AS s.t. B ∪ H ⊧ AS ∶ e is extended by AS

∀e ∈ E+ ∃AS s.t. B ∪ H ∪ C ⊧ AS ∶ e is extended by AS

∀e ∈ E− ∄AS s.t. B ∪ H ∪ C ⊧ AS ∶ e is extended by AS
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The minimal set H is then the set of rules in S
M

 with minimal length that satisfy the goal 
of ILASP task.

5  Experiments in the ring transfer domain

In this section, we describe the experimental setup and the results of experimentally evalu-
ating the capabilities of our approach in the context of the ring transfer task. In our experi-
ments, we focused primarily on the ability to learn previously unknown axioms describing 
actions’ preconditions (e.g., Statement 1) and effects (e.g., Statement 4), and executability 
conditions (Statement 3). In order to restrict the search space and improve the computa-
tional efficiency, separate ILASP tasks for each action are defined to learn the different 
types of axioms. Also, separate ILASP tasks are defined for each domain fluent, one each 
for the initiated and the terminated conditions respectively.

We begin by defining the background knowledge and the search space for ILASP tasks 
(Sect. 5.1), and describe how the training examples were generated (Sect. 5.2). We then 
discuss the results of comparing the learned axioms with the ground truth information pro-
vided by the designer (Sect. 5.3). In the first experiment, we used the length of axioms and 
the computational time required by ILASP as the evaluation measures; we hypothesized 
that the learned axioms would closely match the ground truth information. In the next 
experiment, we considered 1000 simulated scenarios that mimic challenging conditions for 
the ring transfer task, including both sequential and parallel execution of actions. In each 
scenario, we conducted paired trials with the learned and ground truth axioms respectively. 
In these trials, we used planning time and plan length as the evaluation measures (with 
plans computed using the Clingo ASP solver).

5.1  Background knowledge and search space

In our experimental trials, we considered action preconditions and executability conditions 
in one set and the action effects in another set. Below, we describe the initial set up for 
these two sets of axioms.

5.1.1  Preconditions and executability conditions

For the experiment that focused on learning action preconditions and executability condi-
tions, the background knowledge of each ILASP learning task (one per action) included the 
definitions of sorts and helper axioms describing the difference between two different arms 
or colors:

The search space for each ILASP task was defined using mode bias for compactness. Spe-
cifically, for the task of learning preconditions and executability conditions for any given 
action, we defined the search space such that the action can only occur in the head of an 
aggregate rule (to capture preconditions) or in the body of axioms (for executability condi-
tions). In ILASP syntax, this corresponded to the statements #modeha(action) and 
#modeb(1, action), respectively; #modeb(1, action) specifies that action 

���������(��, ��) ∶ −���(��), ���(��), ��! = ��.

���������(��, ��) ∶ −�����(��), �����(��), ��! = ��.
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can appear in the body of an axiom only once. We also specified that each environmen-
tal (i.e., domain) fluent presented in Sect. 3 may appear in the body of axioms, by add-
ing the mode bias statement #modeb(1, fluent). Similarly, we added the statement 
#modeb(1, different). When defining the search space, arguments of atoms which 
are variables or constants must be clearly stated in ILASP. Axioms with more variables 
generally require more computational effort. For the task of learning preconditions and 
executability constraints, only arm and color were defined as variables in atoms. Finally, 
the length of the body of axioms is limited to three atoms using a specific ILASP flag from 
command line, to reduce the dimension of the problem.

5.1.2  Effects of actions

To learn the effects of action, we set up two ILASP learning tasks per environmental fluent, 
one each for the axioms associated with the initiated and terminated relations. 
The background knowledge for these learning tasks contained the same ASP statements 
presented in the previous section, and the laws of inertia (Statement 5). Moreover, since 
effects are delayed with respect to actions, we included the concept of temporal sequence:

where delay is a variable constrained to the set 1..N and N is an estimate of the maxi-
mum delay between actions and effects in the domain; N can be increased until ILASP is 
able to find a suitable hypothesis with the minimum temporal delay. For the ring transfer 
task, ILASP found the minimum value of N=1. We then defined the search space using the 
mode bias #modeh(initiated(fluent, t)) or #modeh(terminated(fluent, 
t)), which specified the head of candidate normal axioms. Moreover, for each envi-
ronmental fluent f and each action action of the task, we stated #modeb(1, f t

 ), 
#mode(1, action_t ) to allow them in the body of candidate rules. Also #modeb(1, 
prev) was included in the mode bias. Note that the inertia laws (Statement 5) imply that 
fluent_t :- initiated(fluent, t), which would lead ILASP to learn the trivial 
axiom:

As a result, in the ILASP task to learn initiated conditions for a specific fluent, 
we omitted the mode bias #modeb(1, fluent_t ). ILASP variables included color, 
arm, and time, and delay was defined as a constant #constant(delay, 1..N) 
to reduce the size of the search space. The maximum body length of axioms is limited to 
three.

5.2  Experimental setup: generation of examples

The training and testing examples were extracted from videos of a human or the robot per-
forming the target task; we used similar videos in our prior work (Ginesi et al. 2020). When 
a human performed the task, all four rings were on grey pegs, and had to be transferred 
between the two arms before being placed on suitable colored pegs. Hence, all actions 
mentioned in Sect. 3 appeared in the videos. Figure 3 shows screenshots of the initial states 
of the task, when performed by the robot, focusing on scenarios that are useful to learn 

�����(�..�).

����(��, ��, �) ∶ −����(��), ����(��), �����(�), �� = �� + �.

���������(������, �) ∶ −������_t
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previously unknown knowledge about the task and the domain. For example, in Fig. 3a the 
transfer of the blue ring failed, and PSM2 had to re-open its gripper before moving to the 
blue ring again; this scenario can be used to learn the constraint encoded by Statement 3c. 
In a similar manner, the blue and red pegs were occupied in Fig. 3b and one of these pegs 
had to be freed to complete the task; this scenario can be used to learn the axiom encoded 
by Statement 3d. Finally, Fig. 3c corresponds to the scenario that requires concurrent (i.e., 
parallel) movement of the two arms.

From each video, we extracted geometric features from each image (i.e., frame) of the 
videos using standard (color and shape) image segmentation algorithms. We matched these 
features semantically to the corresponding fluents; this is the same approach used in our 
previous work  (Ginesi et  al. 2020). In this process, we also exploited known transforms 
between frames of the PSMs and the RGB-D cameral these transforms were obtained from 
the calibration method described in Roberti et al. (2020). We then labeled each frame in 
the video with the recognized fluents and action being executed. This process was repeated 
in all the videos to generate the set of labeled examples that serves as the input to our 
approach to learn previously unknown axioms corresponding to executability conditions 
(Statement  3), action preconditions (Statement  1), and action effects (Statement  4). The 
target axioms define logical relations between atoms describing actions and domain flu-
ents; the corresponding examples will only contain these atoms. We next describe the setup 
for these types of axioms.

5.2.1  Action preconditions and executability conditions

Since all atoms in the axioms corresponding to the preconditions and executability condi-
tions of actions refer to the same timestep t (Sects. 3.1, 3.2), we omitted the timestep in 
the literals to reduce the number of variables in the search space and speed up learning. For 
each timestep, we defined the positive examples as CDPIs of the form ⟨einc, eexc,C⟩ , where 
einc was the executed action, C contained the atoms of the fluents describing the environ-
mental state, and eexc = � . We also specified actions that could not occur at each timestep, 
simulating knowledge from an expert designer analyzing the video under consideration. 
We then defined negative examples with forbidden actions in einc and eexc = � . Although 
it is possible to add forbidden actions in the set eexc in the positive examples, the fact that 
ILASP learns through brave induction from positive examples (see Sect. 4) implies there is 
no guarantee that actions in eexc will always be excluded by the solution hypothesis. On the 
contrary, negative examples are cautiously entailed by adding executability conditions to 
the hypothesis set to ensure that the learned axioms are reliable. As an illustrative example, 
consider the scene in Fig. 3a. The first action moves PSM1 towards the red ring, providing 
a positive example: 

Fig. 3  Screenshots of initial states of surgical robot executing action sequences; information extracted from 
the corresponding images were used for experimental evaluation
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 At the same time, it is not possible to move PSM1 to the blue ring, providing the negative 
example: 

 To reduce the complexity of the learning task, we omitted redundant examples, i.e., exam-
ples that only differ in the grounding of variables in the atoms. For example, in the sce-
nario in Fig. 3c, both arms moved to a ring (PSM1 moved to blue ring, PSM2 moved to 
yellow one) at t=1. This generated two examples that differ not in context but only in the 
grounding of move(A, R, C); only one example was added. Overall, we generated 8 
positive examples and 8 negative examples for move(A, P, C); 9 positive examples 
and 20 negative examples for move(A, R, C); 2 positive examples and 1 negative 
example for move(A, center, C); 11 positive examples for grasp(A, R, C); 10 
positive examples and 4 negative examples for release(A); and 1 positive example for 
extract(A, R, C).

5.2.2  Action effects

Since atoms in axioms corresponding to action effects do not share the same timestep 
(Sect. 3.3), examples for these axioms must account for the temporal aspects. Since our 
formulation includes predicates inspired by event calculus, we generated two examples 
for each fluent for each task execution, one each for the initiated and the termi-
nated axioms of this fluent. Only positive examples were considered since they would 
not be used to learn executability conditions (see above). Examples were CDPIs of the 
form ⟨einc, eexc,C⟩ , where einc was the set of initiated (or terminated) conditions 
at all timesteps, while eexc was the set of initiated (or terminated) conditions 
that did not hold at all timesteps. The context C was the task history, i.e., the set of 
atoms corresponding to actions and fluents that were true at all timesteps. The set eexc 
was needed to guarantee that only relevant causal laws were learned, given that positive 
examples are subject to brave induction—see Definition 2. Consider the scene in Fig. 3b 
as an illustrative example. For the fluent at(A, R, C, t), the positive example 
(considering only the initiated condition for simplicity) is shown below, with the 
atoms corresponding to the set eexc underlined: 

#���{���, {����(����, �, ���)}, {},

{���������(����, �, ���), ���������(����, �, ����),

���������(����, , ���), ���������(����, , ����),

���������(����, , �����), ���������(����, , 
����	),

���������(����, , ���
), ���������(����, , ���
),

��(�, ���, , ���
)}}

#���{���, {����(����, �, ����)}, {},

{��������(����, �, ���), ��������(����, �, ����),

��������(����, �, ���), ��������(����, �, ����),

��������(����, �, �����), ��������(����, �, 
����	),

��������(����, �, ���
), ��������(����, �, ���
),

��(�, ���, �, ���
)}}
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 As before, we omit redundant examples for action effects. Overall, we generated 1 
example for the initiated (equivalently, terminated) condition for closed_
gripper(A); 2 examples for in_hand(A, R, C); 1 example for at(A, center); 
2 examples for on(R, C1, P, C2); and 3 examples for at(A, O, C).

5.3  Experimental results

Next, we describe and discuss the experimental results1; these results were obtained on a 
PC with 2.6 GHz Intel Core i7 processor and 16 GB RAM.

5.3.1  Preconditions and executability conditions

We begin by describing the results for learning the action preconditions and executability 
conditions. The learned action preconditions are as follows:

arm(A) is needed only for parallel execution of the task, see Sect. 3.1.
Statement  12 matches the action preconditions in Statement  1. Note that the ILASP 

learning task for any given action only provides the aggregate rule for the precondition 
of that action, e.g., 0 {move(A, R, C) : reachable(A, R, C)} 1. In State-
ment 12, the preconditions for all the actions are compacted into a single aggregate rule, 
which allows the agent to choose at most one of the available actions when solving the task 
planning problem. Moreover, the temporal variable is manually added to all atoms.

Next, the learned executability constraints obtained from the ILASP learning tasks for 
all actions are as follows: 

#���{���,

{���������(��(����, �, ���, �)), ���������(��(����, �, ���, �)), ...},

{���������(��(����, �, ���, �)), ���������(��(����, �, ���, �)), ...},

{����
����(����, �, ���, _), ����
����(����, �, ���, _),

����
����(����, 	, ���, _), ����
����(����, 	, ���, _),

����
����(����, 	, �����, _), ����
����(����, 	, ������, _),

����
����(����, 	, ����, _), ����
����(����, 	, ����, _),

��(�, ���, 	, ���, �), ��(�, ���, 	, ���, �), ...}}

(12)

�{����(�, �, �, �) ∶ ���������(�, �, �, �);

����(�, ������, �, �) ∶ ��_����(�, , �, �);

�������(�, , �, �) ∶ ��_����(�, , �, �);

���
	(�, , �, �) ∶ ��(�, , �, �);

�����
�(�, �) ∶ ��_����(�, , �, �)}� ∶ −���(�).

(13a)∶ −����(�, �, ��, �), ��_����(�, �, �, �), ��(�, �, �, ��, �).

1 Files available: https:// gitlab. com/ dan11 694/ ilp- for- task- knowl edge- learn ing. git.

https://gitlab.com/dan11694/ilp-for-task-knowledge-learning.git
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 Note that the timestep variable is added to each atom after it is learned. Statements 13a–c 
represent the same conditions as in Statements  3c,  3a and  3b respectively; forbidding 
motion when both arms hold the same ring is equivalent to forbidding motion when the 
arm which cannot reach the peg is holding the ring after transfer. Statements 13d,e match 
the constraints in Statements 3d,e. Note that Statement 13b contains placeholders in the 
action atom. In fact, executability conditions are learned through a separate ILASP learn-
ing task for each action, considering only examples that are relevant to that action. This 
results in the following executability condition without the action fluent (of moving to a 
peg):

This condition cannot be satisfied when combined with the set of axioms for the other 
actions. Hence, we add the action atom with placeholders to relate this condition to the 
action of moving to a peg. These placeholders help ensure the generality of the learned 
conditions.

Table 1 shows the time taken to learn the preconditions and executability conditions 
for each action, and compares the length of the learned axioms with the original ASP 
encoding of the domain. Action move(A, P, C) has the largest learning time, the 
largest axiom length, and the largest number of variables in the axioms; more time is 
hence needed to search the set of hypotheses and find the correct one. Performance is 
also influenced by the number and type (i.e., positive, negative) of examples, e.g., the 
learning time for the release action is more than that of the grasp action that has 
more variables because release has four negative examples while grasp has none. 
An overall reduction from 26 to 24 is obtained in the length of the axioms using the 
ILASP-based approach. This reduction is based on the ability of ILASP to find shorter 

(13b)∶ −����(_, �, _, �), ��_����(�, �, �, �), ��� ���������(�, �, �, �).

(13c)∶ −����(�, ������, �, �), ��(�, �, �, ��, �).

(13d)∶ −����(�, �, �, �), ������_�������(�, �).

(13e)∶ −��(�, ��, �, �, �), ����(�, �, �, �).

∶ −��_����(�, �, �, �), ��� ���������(�, �, �, �).

Table 1  Quantitative results of 
the ILASP task for preconditions 
and executability conditions

The lengths of original and learned axioms are compared, and the 
learning time is shown (as computed by ILASP)

Actions Original 
(length)

Learned 
(length)

Time (sec)

move(A, R, C) 4 4 0.49
move(A, P, C) 11 10 49.17
move(A, center, C) 5 4 0.09
extract(A, R, C) 2 2 0.06
grasp(A, R, C) 2 2 0.09
release(A) 2 2 0.79
Total 26 24 50.69
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axioms connecting actions and environmental conditions, discovering logical relations 
that are not intuitive for a human manually encoding the domain and the task.

5.3.2  Effects of actions

The learned axioms corresponding to the effects of actions, after replacing prev(T1, 
T2, 1) with the more compact representation of the temporal variable in Clingo’s syntax, 
includes the following axioms related to the initiated relation: 

 Note that ILASP initially finds the following axiom corresponding to the initiated 
relation for fluent closed_gripper(A):

This axiom is found because the execution of a grasp action sets the value of both of 
these fluents to be true. So we split any such axioms such that the fluents are related to the 
corresponding actions, as shown in Statement  14a and Statement  14b. Another point of 
interest is that Statement 14c is learnt using intermediate predicate invention. In fact, the 
ILASP2i algorithm used in this paper returns the partial hypothesis after evaluation of each 
example, particularly when it is unable to find a valid hypothesis for all examples at the 
first try; this is due to the constraint we imposed on the length of body of axioms to limit 
the search space for computational efficiency. In this case, the partial hypothesis is:

This hypothesis only covers examples in which a ring is placed on the same-colored peg, 
but it does not cover scenarios in which a ring has to be placed on a grey peg (Figure 3b). 
We add this partial hypothesis as an axiom in the background knowledge:

and we modify the mode bias to include flag in the search space. ILASP is then able 
to find the correct axiom. Notice that increasing the maximum axiom length in the 

(14a)���������(��_����(�, �, �), �) ∶ −�����(�, �, �, � − �).

(14b)���������(������_�������(�), �) ∶ −�����(�, �, _, � − �).

(14c)
���������(��(�, ��, �, ��), �) ∶ −��_����(�, �, ��, � − �),

��(�, �, ��, � − �), �������(�, � − �).

(14d)���������(��(�, �, �), �) ∶ −����(�, �, �, � − �).

(14e)
���������(��(��, �, �), �) ∶ −����(��, ������, �, � − �),

���������(��, ��).

(14f)���������(��(�, �, �), �) ∶ −����(�, �, �, � − �).

(14g)���������(��(�, ������), �) ∶ −����(�, ������, _, � − �).

(15)���������(������_�������(�), �) ∶ −��_����(�, �, �, �).

���������(��(�, �, �, �), �) ∶ −�������(�, � − �), ��(�, �, �, � − �).

(16)����(�, �, ��, ��) ∶ −�������(�, ��), ��(�, �, �, ��), ����(��, ��, �).
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hyper-parameters would lead to the same result without intermediate predicate invention, 
though increasing the search space.

Note that the axioms learned also include statements corresponding to the termi-
nated relation: 

 Recall that Sect.  5.2.2 had highlighted the need to include non-observed fluents while 
learning causal laws. As an example, consider the initiated condition for the fluent 
at(A, R, C). Excluding non-occurring fluents from examples generates the following 
initiating axiom:

which does not always hold and inverts the causal relation between body and head of a 
rule.

5.3.3  Validation of learned axioms

We validated the learned axioms in simulated scenarios that mimic challenging environ-
mental conditions for the ring transfer task. We generated 1000 scenarios by considering 
all possible combinations of four rings on the peg base, with the constraint that all rings 
need to be placed on a peg at the beginning. For each scenario, both sequential and par-
allel execution of the task were executed; overall, all available actions in the domain are 
included in the dataset of executions for proper validation of all axioms. We set a maxi-
mum limit of 200s for plan computation. This is because plan computation can take a long 
time with the manually-encoded original set of axioms shown in Sect. 3. The learned axi-
oms provide a better encoding; once learned, they were used to replace the corresponding 
axioms from the original set.

Including the learned axioms discussed in the last few sections does not automati-
cally support the computation of a plan in all the simulated scenarios; some knowledge 
may be missing in certain scenarios depending on the learning examples presented. So, 
we identified the axioms that affect the plan computation, iteratively omitting axioms for 
each domain fluent (effects of actions) and each action (preconditions and executability 

(17a)
����������(��_����(�, �, �), �) ∶ −�������(�, � − �),

��_����(�, �, �, � − �).

(17b)����������(������_�������(�), �) ∶ −�������(�, � − �).

(17c)
����������(��(�, ��, �, ��), �) ∶ −��_����(�, �, ��, � − �),

��(�, ��, �, ��, � − �).

(17d)����������(��(�, �, �), �) ∶ −�������(�, �, �, � − �).

(17e)
����������(��(��, �, �), �) ∶ −��(��, �, �, �), ��(��, ������, �),�������(��, �).

(17f)����������(��(�, �, �), �) ∶ −��(�, �, �, � − �), �����(�, �, ��, �).

(17g)
����������(��(��, ������), �) ∶ −��(��, ������, _),����(��, �, �, �), ����(��, �, �, �).

���������(��(�, �, �), �) ∶ −��_����(�, �, �, � + �).
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constraints). We found that Statements 17b-e-f were the bottleneck for plan computation. 
Hence, we ran a new ILASP task for corresponding fluents, i.e., at(A, O, C) and 
on(R, C1, P, C2), removing Statements 17b-e-f from the search space. This resulted 
in the following final set of axioms related to the terminated relation (with the new axi-
oms underlined), which then allowed plans to be computed for all the simulated scenarios: 

 Tables  2, 3 show the learning performances for initiated (Statements 14) and the 
new set of terminated axioms. For the closed_gripper(A) fluent, the learning 
time was the same as that for in_hand(A, R, C) because of the semantic equiva-
lency between them—see discussion of Statement 15. For fluents on(R, C1, P, C2), 
at(A, O, C), and at(A, center), the initiating and terminating axioms required 
most of the overall learning time because the target hypothesis for these axioms was bigger 
than that of the other axioms. Another observation was that the original ASP encoding for 
the preconditions, executability conditions, and effects contains more axioms than learned 

(18a)
����������(��_����(�, �, �), �) ∶ −�������(�, � − �),

��_����(�, �, �, � − �).

(18b)����������(������_�������(�), �) ∶ −�������(�, � − �).

(18c)
����������(��(�, ��, �, ��), �) ∶ −��(�, ��, �, ��, � − �),�������(�, �, ��, � − �).

(18d)����������(��(�, �, �), �) ∶ −�������(�, �, �, � − �).

(18e)����������(��(�, �, �), �) ∶ −��(�, �, �, � − �), �������(�, � − �).

(18f)����������(��(�, �, �), �) ∶ −��(�, �, �, � − �),����(�, ������, �, � − �).

(18g)����������(��(�, �, �), �) ∶ −��(�, �, �, � − �), ��(�, �, ��, �).

(18h)
����������(��(��, ������), �) ∶ −��(��, ������, _), ����(��, �, �, �), ����(��, �, �, �).

Table 2  Quantitative results for 
axioms of action effects in the 
context of initiated 

We compare the length of the original axioms with that of the learned 
axiom; we also show the learning time returned from ILASP
Adding new predicate in Statement 16 to the background knowledge.

Actions Original 
(length)

Learned 
(length)

Time (sec)

at(A, R, C) 6 5 17.77
at(A, P, C) 2 2 24.89
at(A, center) 2 2 13.50
in_hand(A, R, C) 2 2 10.15
on(R, C1, P, C2) 4 4 67.06
closed_gripper(A) 2 2 10.15
Total 18 17 143.52
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ones, e.g., the condition for terminating at(A, P, C) is significantly shorter. In fact, a 
comparison of Statements 18g and 7f-h indicates that ILASP finds a single axiom describ-
ing the terminated condition, connecting fluents instead of actions, which is different 
from the statements encoded by a human designer.

Figures 4 and 5 show the comparison between learned and original ASP programs for 
the sequential and parallel task execution respectively. We specifically compared the size 
of the plans returned by the two ASP programs, and the plan computational time, in the 
simulated scenarios. To generate these figures, data collected from these simulated sce-
narios were processed first. We sorted all scenarios according to the size of the plan gen-
erated by the original ASP encoding, with plan size measured in terms of the number of 
actions in the plan; this resulted in several clusters of scenarios. For each scenario, we 
computed the size of the plan generated with the learned ASP encoding. Then the mean 
and standard deviation of plan length with the learned ASP encoding were computed for 
each cluster of scenarios, and compared with the plan length with the original ASP encod-
ing (top part of Figs. 4, 5). We also computed the mean and standard deviation of planning 

Table 3  Quantitative results for 
axioms of action effects in the 
context of terminated 

We compare the length of the original axioms with that of the learned 
axiom; we also show the learning time returned from ILASP

Actions Original 
(length)

Learned 
(length)

Time (sec)

at(A, R, C) 10 8 18.23
at(A, P, C) 10 3 24.79
at(A,center) 6 4 20.86
in_hand(A, R, C) 3 3 10.76
on(R, C1, P, C2) 3 3 92.36
closed_gripper(A) 2 2 10.76
Total 34 23 177.76

Fig. 4  Comparison between learned and original axioms in simulation for scenarios that involve sequential 
execution of actions
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time for each cluster of scenarios, both for original and learned ASP encoding, to obtain 
one pair of points in the bottom part of Figs. 4, 5. The results indicated that for scenarios 
that considered only the sequential execution of actions, plans computed with the learned 
ASP program are of similar length to those with the original ASP program. With scenarios 
that considered the parallel execution of actions, plans computed with the learned ASP 
program were slightly longer than those with the original ASP program.

Next, when we compared the planning time, the mean and standard deviation were signifi-
cantly lower with the learned ASP program (and sequential action execution) in comparison 
with the original ASP program. This was mainly due to the shorter axioms found by ILASP. 
For example, the average planning time for the sixth, ninth and twelfth clusters was reduced 
by 100s; such a reduction is important for practical use of logic programming to surgery sce-
narios. Such a reduction was not observed in the scenarios with parallel execution of actions. 
We think this may be because the planning time (with parallel execution) was significantly 
lower than with sequential execution of actions, both for the learned and original ASP pro-
grams—see the relaxed choice encoded by Statement 2. Also, the computational time was 
similar for the original and learned ASP programs in this case. Note that one cluster of six sce-
narios had null (i.e., empty) plan size with sequential action execution and the original ASP 
program; this was because it was not possible to compute a plan within the maximum allowed 
time; the corresponding planning time was set to a maximum value of 600s, which was higher 
than the maximum allowed planning time, for visualization convenience. With the learned 
program, the plan could not be found in only one execution; the corresponding average plan-
ning time in the bottom part of Fig. 4-bottom is thus high but not as high as that with the origi-
nal ASP program. The starting cluster of the failed attempts to compute the plan determines 
the initial apparent decrease in the plan computation time for sequential action execution. For 
the scenarios involving parallel action execution, the computational time rose with the plan 
size after the first cluster. This is reasonable since longer plans are generated in more complex 
conditions (e.g., colored pegs are occupied or more transfer of rings).

Fig. 5  Comparison between learned and original axioms in simulation for scenarios that involve parallel 
execution of actions
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6  Conclusion

In this paper, we have presented an ILP-based approach for surgical task knowledge learning. 
Our method can cope with multiple issues of interest in surgical scenarios, such as the unavail-
ability of large training datasets and the need for explainable surgical task description. We 
have used a benchmark task for training surgeons, the ring transfer executed with the VinciⓇ 
robot, as the illustrative task. Given a set of only four incomplete executions of the task from 
the human and the robot, we have shown that it is possible to fast learn the axioms in ASP 
syntax encoding actions and their relations with the environment, using inductive learning 
based on the ILASP tool. In addition, we have separated the learning tasks for different parts 
of the ASP encoding, and proposed a systematic learning approach that can be extended to 
other robot tasks. This separation of parts of the encoding supports incremental refinement of 
the knowledge (i.e., axioms) and the associated search space.

We evaluated our approach in the context of simulated scenarios of challenging conditions 
for the ring transfer task; we considered both sequential and parallel action execution. With 
the learned ASP encoding, performance is comparable or only slightly worse than that with 
the original ASP encoding in terms of the size of the plans found. We also examined the plan 
computation time, which affects the real-time execution on a physical robot in the surgery 
domain. The experimental results indicated the ability to discover semantic relations (between 
atoms) that were not in the original ASP encoding provided by the human designer; this 
results in shorter axioms and also significantly reduces the planning time in certain scenarios. 
There are some differences in performance between scenarios that involve sequential action 
execution and those that involve parallel action execution; these differences will be explored 
further in future work. The validation on an extensive set of simulated scenarios has also evi-
denced the need for refinement of initially learned axioms. This shows that initially provided 
examples were not “good” enough to learn adequate ASP axioms for complex instances of the 
ring transfer task.

A disadvantage of our method is the need for labeled executions of the target task, which 
may limit the scalability of this approach to more complex surgical procedures. Our ongo-
ing research is focused on the unsupervised segmentation of actions and fluents from videos 
and kinematic recordings (Meli and Fiorini 2021), which is an open problem in the surgical 
domain (Krishnan et al. 2017; van Amsterdam et al. 2019). We are also integrating the frame-
work for automated task execution presented in Ginesi et al. (2020) with our ILASP-based 
framework, following an approach similar to Calo et  al. (2019). This will allow an expert 
human to supervise the learning system, defining the positive and negative examples in real-
time for online refinement of ASP task knowledge.
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