3,126 research outputs found

    Band Symmetries and Singularities in Twisted Multilayer Graphene

    Get PDF
    The electronic spectra of rotationally faulted graphene bilayers are calculated using a continuum formulation for small fault angles that identifies two distinct electronic states of the coupled system. The low energy spectra of one state features a Fermi velocity reduction which ultimately leads to pairwise annihilation and regeneration of its low energy Dirac nodes. The physics in the complementary state is controlled by pseudospin selection rules that prevent a Fermi velocity renormalization and produce second generation symmetry-protected Dirac singularities in the spectrum. These results are compared with previous theoretical analyses and with experimental data.Comment: 5 pages, 3 figure

    Carbon Nanotubes in Helically Modulated Potentials

    Get PDF
    We calculate effects of an applied helically symmetric potential on the low energy electronic spectrum of a carbon nanotube in the continuum approximation. The spectrum depends on the strength of this potential and on a dimensionless geometrical parameter, P, which is the ratio of the circumference of the nanotube to the pitch of the helix. We find that the minimum band gap of a semiconducting nanotube is reduced by an arbitrarily weak helical potential, and for a given field strength there is an optimal P which produces the biggest change in the band gap. For metallic nanotubes the Fermi velocity is reduced by this potential and for strong fields two small gaps appear at the Fermi surface in addition to the gapless Dirac point. A simple model is developed to estimate the magnitude of the field strength and its effect on DNA-CNT complexes in an aqueous solution. We find that under typical experimental conditions the predicted effects of a helical potential are likely to be small and we discuss several methods for increasing the size of these effects.Comment: 12 pages, 10 figures. Accepted for publication in Physical Review B. Image quality reduced to comply with arxiv size limitation

    Innovative mass-damping-based approaches for seismic design of tall buildings

    Get PDF
    Mass damping is a well known principle for the reduction of structural vibrations and applied in tall building design in a variety of configurations. With mass usually small (around 1% of building mass), the properly “tuned” mass damper (TMD) shows great effectiveness in reducing wind vibrations, but minor advantages under earthquake excitations. The above limitation can be surpassed by utilizing relatively large mass TMD. For this purpose, two different solutions are here proposed. In both cases, the idea is to separate the building into two or more parts, thus allowing for a relative motion between them, and activating the mass damping mechanism. In the first solution, the building is subdivided along elevation into an upper and a lower structure, separated by means of an intermediate isolation system (IIS). In the second solution, by revisiting the classical mega-frame typology, the exterior full-height structure provides the global strength and stiffness, and secondary structures, extending between two transfer levels, are physically detached from the main structure at each floor and isolated at transfer level. Simplified lumped-mass models are developed for illustrating the dynamic behaviour of the two solutions and carrying out parametric analyses. Procedures for deriving optimum values of design parameters are also proposed and compared to the parametric study

    Improving the Seismic Response of Tall Buildings: From Diagrid to Megastructures and Mega-Subcontrol Systems

    Get PDF
    Background: Diagrid structures, widely used for the tall buildings of the third millennium, are characterized by a very effective behaviour in the elastic field due to the grid triangulation. In particular, under horizontal actions, axial forces and deformations mainly arise in the structural members of the diagrid, thus resulting in the reduction of the shear lag effect and racking deformations. The response to incremental horizontal actions beyond the plastic threshold, however, shows a poor plastic redistribution capacity, with consequent low values of global ductility, in spite of a significant design overstrength. Objective: In this paper, it is proposed to exploit the high elastic efficiency of the diagrid type and use a vibration control system, based on mass damping mechanism with large mass ratios, to reduce a priori the inelastic demands due to seismic actions. Methods: Starting from the analysis of the seismic behavior of archetype diagrid buildings, a case study is selected to assess the effectiveness of the proposed motion-based design approach. For this purpose, the diagrid is first transformed into a megastructure (MS) configuration by densifying the diagonal elements at the most stressed corner areas and transfer floors, suitably chosen. Then, the exterior mega-frame is detached from interior sub-structures, thus allowing for a relative motion between the two structural portions according to a “mega-sub-structure control system” (MSCS), which activates the mass damping mechanism. Results: Time-history analyses carried out on simplified lumped-mass models confirm the effectiveness of the proposed strategy in reducing the seismic response. Conclusion: Finally, the practical feasibility of the MSCS and engineering solutions for the relevant structural organization are discussed

    Spin texture on the Fermi surface of tensile strained HgTe

    Get PDF
    We present ab initio and k.p calculations of the spin texture on the Fermi surface of tensile strained HgTe, which is obtained by stretching the zincblende lattice along the (111) axis. Tensile strained HgTe is a semimetal with pointlike accidental degeneracies between a mirror symmetry protected twofold degenerate band and two nondegenerate bands near the Fermi level. The Fermi surface consists of two ellipsoids which contact at the point where the Fermi level crosses the twofold degenerate band along the (111) axis. However, the spin texture of occupied states indicates that neither ellipsoid carries a compensating Chern number. Consequently, the spin texture is locked in the plane perpendicular to the (111) axis, exhibits a nonzero winding number in that plane, and changes winding number from one end of the Fermi ellipsoids to the other. The change in the winding of the spin texture suggests the existence of singular points. An ordered alloy of HgTe with ZnTe has the same effect as stretching the zincblende lattice in the (111) direction. We present ab initio calculations of ordered Hg_xZn_1-xTe that confirm the existence of a spin texture locked in a 2D plane on the Fermi surface with different winding numbers on either end.Comment: 8 pages, 8 figure

    Effect of different underhead shot-peening and lubrication conditions on high-strength screws undergoing multiple tightenings

    Get PDF
    This study investigates the effect of shot-peening on the bearing friction coefficient of 42CrMoV grade 14.9 screws. An experimental campaign was conducted on a tribological testing rig, investigating the combined effects of shot peening treatments, lubrication conditions, and number of tightenings on the frictional coefficient. A first set of tests was performed, considering the same shot-peening conditions as in a previous study to highlight the role of different material. A second campaign was carried out, adjusting the process parameters to enhance the tribological response. Small shots and high-impact energy are suitable for tightening with lubricant, whereas, in dry conditions, larger shots and lower-impact energy lead to particularly low friction coefficients that are well aligned to those achievable when using lubricants

    Plasmon reflections by topological electronic boundaries in bilayer graphene

    Full text link
    Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local ac conductivity, which leads to plasmon reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave interference patterns, which we attribute to shear and tensile domain walls. We compute the electronic structure of both wall varieties and show that the tensile wall contain additional confined bands which produce a structure-specific contrast of the local conductivity. The calculated plasmonic interference profiles are in quantitative agreement with our experiments.Comment: 14 pages, 5 figure

    Enhanced self-field critical current density of nano-composite YBa(2)Cu(3)O(7) thin films grown by pulsed-laser deposition

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ EPLA, 2008.Enhanced self-field critical current density Jc of novel, high-temperature superconducting thin films is reported. Layers are deposited on (001) MgO substrates by laser ablation of YBa2Cu3O7−ή(Y-123) ceramics containing Y2Ba4CuMOx (M-2411, M=Ag, Nb, Ru, Zr) nano-particles. The Jc of films depends on the secondary-phase content of the ceramic targets, which was varied between 0 and 15 mol%. Composite layers (2 mol% of Ag-2411 and Nb-2411) exhibit Jc values at 77 K of up to 5.1 MA/cm2, which is 3 to 4 times higher than those observed in films deposited from phase pure Y-123 ceramics. Nb-2411 grows epitaxially in the composite layers and the estimated crystallite size is ~10 nm.The Austrian Science Fund, the Austrian Federal Ministry of Economics and Labour, the European Science Foundation and the Higher Education Commission of Pakistan
    • 

    corecore