15 research outputs found

    Validation of a 40-Gene Expression Profile Test to Predict Metastatic Risk in Localized High-Risk Cutaneous Squamous Cell Carcinoma

    Get PDF
    Background: Current staging systems for cutaneous squamous cell carcinoma (cSCC) have limited positive predictive value (PPV) for identifying patients who will experience metastasis. Objective: To develop and validate a gene expression profile (GEP) test for predicting risk for metastasis in localized, high-risk cSCC with the goal of improving risk-directed patient management. Methods: Archival formalin-fixed paraffin-embedded primary cSCC tissue and clinicopathologic data (n=586) were collected from 23 independent centers in a prospectively designed study. A GEP signature was developed using a discovery cohort (n=202) and validated in a separate, non-overlaping, independent cohort (n=324). Results: A prognostic, 40-gene expression profile (40-GEP) test was developed and validated, stratifying high-risk cSCC patients into classes based on metastasis risk: Class 1 (low-risk), Class 2A (high-risk), and Class 2B (highest-risk). For the validation cohort, 3-year metastasis-free survival (MFS) rates were 91.4%, 80.6%, and 44.0%, respectively. A PPV of 60% was achieved for the highest-risk group (Class 2B), an improvement over staging systems; while negative predictive value, sensitivity, and specificity were comparable to staging systems. Limitations: Potential understaging of cases could affect metastasis rate accuracy.Conclusion: The 40-GEP test is an independent predictor of metastatic risk that can complement current staging systems for patients with high-risk cSCC

    Clinical Performance and Management Outcomes with the DecisionDx-UM Gene Expression Profile Test in a Prospective Multicenter Study

    No full text
    Uveal melanoma management is challenging due to its metastatic propensity. DecisionDx-UM is a prospectively validated molecular test that interrogates primary tumor biology to provide objective information about metastatic potential that can be used in determining appropriate patient care. To evaluate the continued clinical validity and utility of DecisionDx-UM, beginning March 2010, 70 patients were enrolled in a prospective, multicenter, IRB-approved study to document patient management differences and clinical outcomes associated with low-risk Class 1 and high-risk Class 2 results indicated by DecisionDx-UM testing. Thirty-seven patients in the prospective study were Class 1 and 33 were Class 2. Class 1 patients had 100% 3-year metastasis-free survival compared to 63% for Class 2 (log rank test p=0.003) with 27.3 median follow-up months in this interim analysis. Class 2 patients received significantly higher-intensity monitoring and more oncology/clinical trial referrals compared to Class 1 patients (Fisher’s exact test p=2.1×10-13 and p=0.04, resp.). The results of this study provide additional, prospective evidence in an independent cohort of patients that Class 1 and Class 2 patients are managed according to the differential metastatic risk indicated by DecisionDx-UM. The trial is registered with Clinical Application of DecisionDx-UM Gene Expression Assay Results (NCT02376920)

    Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia

    No full text
    Myelodysplastic syndromes and chronic myelomonocytic leukemia (CMML) are characterized by mutations in genes encoding epigenetic modifiers and aberrant DNA methylation. DNA methyltransferase inhibitors (DMTis) are used to treat these disorders, but response is highly variable, with few means to predict which patients will benefit. Here, we examined baseline differences in mutations, DNA methylation, and gene expression in 40 CMML patients who were responsive or resistant to decitabine (DAC) in order to develop a molecular means of predicting response at diagnosis. While somatic mutations did not differentiate responders from nonresponders, we identified 167 differentially methylated regions (DMRs) of DNA at baseline that distinguished responders from nonresponders using next-generation sequencing. These DMRs were primarily localized to nonpromoter regions and overlapped with distal regulatory enhancers. Using the methylation profiles, we developed an epigenetic classifier that accurately predicted DAC response at the time of diagnosis. Transcriptional analysis revealed differences in gene expression at diagnosis between responders and nonresponders. In responders, the upregulated genes included those that are associated with the cell cycle, potentially contributing to effective DAC incorporation. Treatment with CXCL4 and CXCL7, which were overexpressed in nonresponders, blocked DAC effects in isolated normal CD34(+) and primary CMML cells, suggesting that their upregulation contributes to primary DAC resistance

    Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents

    Get PDF
    International audienceThe cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect
    corecore