8 research outputs found

    Physical and Biological Water Column Observations during Summer Sea/Land Breeze Winds in the Coastal Northern Tyrrhenian Sea

    No full text
    Coupling between sea/land breeze and coastal circulation and the influence of wind-driven dynamics are substantially relevant for understanding coastal Mediterranean ecosystems. These coastal areas are particularly dynamic and are characterized by high-variable processes which drive biological phenomena at different time-scales. For the Tyrrhenian Sea, the available information on coastal dynamics is confined to large-scale general circulation with a focus exclusively on mesoscale pelagic dynamical processes. Hydrodynamic studies of Tyrrhenian coastal areas are very rare and focus on surface water circulation. For time scales that are associated with coastal water circulation, there is also limited knowledge on water column dynamics that are forced by local atmospheric circulations. This paper presents physical and biological data to document the effect of sea/land breeze circulation on ocean current dynamics and water column structures in a Northern Tyrrhenian coastal site. This coastal area is characterized by the presence of a relevant energy production site as well as one of the most important ports in the Mediterranean Sea for cruise traffic. Consequently, this coastal site is a transit point for many tourists and it is characterized by an increase of energy demand, especially during the summer season. The in-situ data show that coastal currents are predominantly controlled by the tide and local wind and respond rapidly to changes in wind direction. Water column thermal structure analyses reveal significant changes with the morning’s rotation of breeze: lifting of isotherms (cooling) was typically observed in deep layers during early mornings, accompanied by fluctuations in isotherms. The performed investigations provide valuable inputs for coastal ecosystem modeling and for a better understanding of the coastal processes that are significant for environmental and navigational interests

    Context-dependent regulation of embryonic stem cell differentiation by mGlu4 metabotropic glutamate receptors

    No full text
    The mGlu5 receptor is the only metabotropic glutamate receptor subtype expressed by mouse embryonic stem (ES) cells grown under non-differentiating conditions [Cappuccio, L, Spinanti, P. Porcellini, A., Desiderati, F., De Vita, T., Storto, M., Capobianco, L., Battaglia, G., Nicoletti, F., Melchiorri, D., 2005. Endogenous activation of mGlu5 metabotropic glutamate receptors supports self-renewal of cultured mouse embryonic stem cells. Neuropharmacology 1, 196-205]. We now report that ES cells differentiating into embryoid bodies (EBs) progressively lose mGlu5 receptors and begin to express mGlu4 receptors at both mRNA and proteinc level. A 4-day treatment of EBs with the mGlu4 receptor agonist, L-2-amino-4-phosphonobutanoate (L-AP4), increased mRNA levels of the mesoderm marker, brachyury and the endoderm marker, H19, and decreased the expression of the transcript for the primitive ectoderm marker, fibroblast-growth factor-5 (FGF-5). These effects were prevented by the mGlu4 receptor antagonists, alpha-methylserine-O-phosphate (MSOP). Plating of EBs for 4 days in vitro in ITSFn medium induced cell differentiation towards a neural lineage, as reflected by the expression of the intermediate filament protein, nestin, and the homeobox protein, Dlx-2. Pharmacological activation of mGlu4 receptors during cell incubation in ITSFn medium increased the expression of both neural markers. Similar results were obtained when neural differentiation was induced by exposure of EBs to retinoic acid. These data suggest that differentiation of cultured ES cells is associated with chances in the expression pattern of mGlu receptors and that activation of mGlu4 receptors affects cell differentiation in a context-dependent manner. (c) 2006 Elsevier Ltd. All rights reserved

    PbLi/Water Reaction: Experimental Campaign and Modeling Advancements in WPBB EUROfusion Project

    Get PDF
    The Water-Cooled Lithium–Lead blanket concept is a candidate breeding blanket concept for the EU DEMO reactor and it is going to be tested as one of the Test Blanket Modules (TBM) inside the ITER reactor. A major safety issue for its design is the interaction between PbLi and water caused by a tube rupture in the breeding zone, the so-called in-box LOCA (Loss of Coolant Accident) scenario. This issue has been investigated in the framework of FP8 EUROfusion Project Horizon 2020 and is currently ongoing in FP9 EUROfusion Horizon Europe, defining a strategy for addressing and solving WCLL in-box LOCA. This paper discusses the efforts pursued in recent years to deal with this key safety issue, providing a general view of the approach, a timeline, research and development, and experimental activities. These are conducted to master dominant phenomena and processes relevant to safety aspects during the postulated accident, to enhance the predictive capability and reliability of selected numerical tools, and to validate and qualify models and codes and the procedures for their applications, including coupling and chains of codes

    Design and Integration of the EU-DEMO Water-Cooled Lead Lithium Breeding Blanket

    Get PDF
    The water-cooled lead lithium breeding blanket (WCLL BB) is one of two BB candidate concepts to be chosen as the driver blanket of the EU-DEMO fusion reactor. Research activities carried out in the past decade, under the umbrella of the EUROfusion consortium, have allowed a quite advanced reactor architecture to be achieved. Moreover, significant efforts have been made in order to develop the WCLL BB pre-conceptual design following a holistic approach, identifying interfaces between components and systems while respecting a system engineering approach. This paper reports a description of the current WCLL BB architecture, focusing on the latest modifications in the BB reference layout aimed at evolving the design from its pre-conceptual version into a robust conceptual layout. In particular, the main rationale behind design choices and the BB’s overall performances are highlighted. The present paper also gives an overview of the integration between the BB and the different in-vessel systems interacting with it. In particular, interfaces with the tritium extraction and removal (TER) system and the primary heat transfer system (PHTS) are described. Attention is also paid to auxiliary systems devoted to heat the plasma, such as electron cyclotron heating (ECH). Indeed, the integration of this system in the BB will strongly impact the segment design since it envisages the introduction of significant cut-outs in the BB layout. A preliminary CAD model of the central outboard blanket (COB) segment housing the ECH cut-out has been set up and is reported in this paper. The chosen modeling strategy, adopted loads and boundary conditions, as well as obtained results, are reported in the paper and critically discussed
    corecore