18 research outputs found
Characterizing SL2S galaxy groups using the Einstein radius
We analyzed the Einstein radius, , in our sample of SL2S galaxy
groups, and compared it with (the distance from the arcs to the center of
the lens), using three different approaches: 1.- the velocity dispersion
obtained from weak lensing assuming a Singular Isothermal Sphere profile
(), 2.- a strong lensing analytical method ()
combined with a velocity dispersion-concentration relation derived from
numerical simulations designed to mimic our group sample, 3.- strong lensing
modeling () of eleven groups (with four new models presented in
this work) using HST and CFHT images. Finally, was analyzed as a function
of redshift to investigate possible correlations with L, N, and the
richness-to-luminosity ratio (N/L). We found a correlation between
and , but with large scatter. We estimate = (2.2 0.9)
+ (0.7 0.2), = (0.4 1.5) + (1.1
0.4), and = (0.4 1.5) + (0.9 0.3) for
each method respectively. We found a weak evidence of anti-correlation between
and , with Log = (0.580.06) - (0.040.1), suggesting
a possible evolution of the Einstein radius with , as reported previously by
other authors. Our results also show that is correlated with L and N
(more luminous and richer groups have greater ), and a possible
correlation between and the N/L ratio. Our analysis indicates that
is correlated with in our sample, making useful to
characterize properties like L and N (and possible N/L) in galaxy groups.
Additionally, we present evidence suggesting that the Einstein radius evolves
with .Comment: Accepted for publication in Astronomy & Astrophysics. Typos correcte
Galaxy properties from J-PAS narrow-band photometry
We study the consistency of the physical properties of galaxies retrieved
from SED-fitting as a function of spectral resolution and signal-to-noise ratio
(SNR). Using a selection of physically motivated star formation histories, we
set up a control sample of mock galaxy spectra representing observations of the
local universe in high-resolution spectroscopy, and in 56 narrow-band and 5
broad-band photometry. We fit the SEDs at these spectral resolutions and
compute their corresponding the stellar mass, the mass- and luminosity-weighted
age and metallicity, and the dust extinction. We study the biases,
correlations, and degeneracies affecting the retrieved parameters and explore
the r\^ole of the spectral resolution and the SNR in regulating these
degeneracies. We find that narrow-band photometry and spectroscopy yield
similar trends in the physical properties derived, the former being
considerably more precise. Using a galaxy sample from the SDSS, we compare more
realistically the results obtained from high-resolution and narrow-band SEDs
(synthesized from the same SDSS spectra) following the same spectral fitting
procedures. We use results from the literature as a benchmark to our
spectroscopic estimates and show that the prior PDFs, commonly adopted in
parametric methods, may introduce biases not accounted for in a Bayesian
framework. We conclude that narrow-band photometry yields the same trend in the
age-metallicity relation in the literature, provided it is affected by the same
biases as spectroscopy; albeit the precision achieved with the latter is
generally twice as large as with the narrow-band, at SNR values typical of the
different kinds of data.Comment: 26 pages, 15 figures. Accepted for publication in MNRA
pyFIT3D and pyPipe3D -- The new version of the Integral Field Spectroscopy data analysis pipeline
We present a new version of the FIT3D and Pipe3D codes, two packages to
derive properties of the stellar populations and the ionized emission lines
from optical spectroscopy and integral field spectroscopy data respectively.
The new codes have been fully transcribed to Python from the original Perl and
C versions, modifying the algorithms when needed to make use of the unique
capabilities of this language with the main goals of (1) respecting as much as
possible the original philosophy of the algorithms, (2) maintaining a full
compatibility with the original version in terms of the format of the required
input and produced output files, and (3) improving the efficiency and accuracy
of the algorithms, and solving known (and newly discovered) bugs. The complete
package is freely distributed, with an available repository online. pyFIT3D and
pyPipe3D are fully tested with data of the most recent IFS data surveys and
compilations (e.g. CALIFA, MaNGA, SAMI and AMUSING++), and confronted with
simulations. We describe here the code, its new implementation, its accuracy in
recovering the parameters based on simulations, and a showcase of its
implementation on a particular dataset.Comment: New Astronomy - 29 pages, 19 figures - Received on 7 Dec 2021 -
Accepted for publication on 8 Jul 202
Spectral evidence of solar neighborhood analogs in CALIFA galaxies
Aims. We introduce a novel nonparametric method to find solar neighborhood analogs (SNAs) in extragalactic integral field spectroscopic surveys. The main ansatz is that the physical properties of the solar neighborhood (SN) should be encoded in its optical stellar spectrum.
Methods. We assume that our best estimate of such a spectrum is the one extracted from the analysis performed by the Code for Stellar properties Heuristic Assignment (CoSH
Galaxy properties from J-PAS narrow-band photometry
We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and showthat the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.© 2017 The Authors.AMN acknowledges support from the Sociedad Mexicana de Fisica through its Program Mexico-Centro America y el Caribe para el Avance de la Ciencia, la Tecnologia y la Innovacion, and thanks the Centro de Investigaciones de Astronomia (CIDA) for a graduate student grant. AMN also thanks the warm hospitality of the Instituto de Radioastronomia y Astrofisica of the National Autonomous University of Mexico (IRyA, UNAM) and the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA) during part of this research. GB acknowledges support for this work from UNAM through grant PAPIIT IG100115.
Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England.Peer Reviewe