121 research outputs found

    The Marine-Derived Oligosaccharide Sulfate (MdOS), a Novel Multiple Tyrosine Kinase Inhibitor, Combats Tumor Angiogenesis both In Vitro and In Vivo

    Get PDF
    Despite the emerging success of multi-targeted protein tyrosine kinase (PTK) inhibitors in cancer therapy, significant side effects and resistance concerns seems to be avoided unlikely. The aim of the present study was to identify novel multi-targeting PTK inhibitors. The kinase enzymatic activities were measured by enzyme-linked immunosorbent assay (ELISA). The antiproliferative activities in human microvascular endothelial cells (HMECs) were evaluated by sulforhodamine (SRB) assay. The phosphorylation of kinases and their downstream molecules was probed by western blot analysis. The binding mode between MdOS and PTKs was profiled by surface plasmon resonance (SPR) approach and molecular simulation. Tube formation assay, rat aortic ring method and chicken chorioallantoic membrane assay were combined to illustrate the in vitro and in vivo anti-angiogenic effects. Results indicated that MdOS, a novel marine-derived oligosaccharide sulfate, exhibited a broad-spectrum PTK inhibitory action. At an enzymatic level, MdOS inhibited HER2, EGFR, VEGFR, PDGFR, c-Kit, FGFR1 and c-Src, with little impact on FGFR2. In cellular settings, MdOS inhibited phosphorylation of PTKs, exemplified by HER2, EGFR and VEGFR2, and downstream molecules of Erk1/2 and AKT. Further studies demonstrated that MdOS acted as an ATP-competitive inhibitor via directly binding to the residues of entrance rather than those of the ATP-binding pocket. Furthermore, MdOS inhibited proliferation and tube formation of HMECs, arrested microvessel outgrowth of rat aortic rings and hindered the neovascularization of chick allantoic membrane. Taken together, results presented here indicated that MdOS exhibited anti-angiogenic activity in a PTK-dependent manner and make it a promising agent for further evaluation in PTK-associated cancer therapy

    Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets

    Get PDF
    The connection between inflammation and tumourigenesis has been well established. However, the detailed molecular mechanism underlying inflammation-associated tumourigenesis remains unknown because this process involves a complex interplay between immune microenvironments and epithelial cells. To obtain a more systematic understanding of inflammation-associated tumourigenesis as well as to identify novel therapeutic approaches, we constructed a knowledge-based network describing the development of colitis-associated colon cancer (CAC) by integrating the extracellular microenvironment and intracellular signalling pathways. Dynamic simulations of the CAC network revealed a core network module, including P53, MDM2, and AKT, that may govern the malignant transformation of colon epithelial cells in a pro-tumor inflammatory microenvironment. Furthermore, in silico mutation studies and experimental validations led to a novel finding that concurrently targeting ceramide and PI3K/AKT pathway by chemical probes or marketed drugs achieves synergistic anti-cancer effects. Overall, our network model can guide further mechanistic studies on CAC and provide new insights into the design of combinatorial cancer therapies in a rational manner

    A Triad of Lys12, Lys41, Arg78 Spatial Domain, a Novel Identified Heparin Binding Site on Tat Protein, Facilitates Tat-Driven Cell Adhesion

    Get PDF
    Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs) have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat–heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR) spatial domain. This domain was also found to facilitate Tat-driven Ξ²1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events

    AST1306, A Novel Irreversible Inhibitor of the Epidermal Growth Factor Receptor 1 and 2, Exhibits Antitumor Activity Both In Vitro and In Vivo

    Get PDF
    Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR) and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/Nneu transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h) and sustained (β‰₯24 h) inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells

    Extensive Crosstalk between O-GlcNAcylation and Phosphorylation Regulates Akt Signaling

    Get PDF
    O-linked N-acetylglucosamine glycosylations (O-GlcNAc) and O-linked phosphorylations (O-phosphate), as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling

    A computing resource scheduling strategy of massive IoT devices in the mobile edge computing environment

    No full text
    Abstract Aiming at the problem of scheduling computing resources for massive Internet of Things (IoT) devices, this paper proposes a scheduling strategy model based on mobile edge computing for massive IoT computing resources. First, the application scenarios are defined, the task offloading model and queue model are constructed. Then, task urgency and BS energy are considered to determine the optimization goal. Next, wolf colony algorithm is used to improve pheromone calculation so that the ant colony algorithm converges faster and is not easy to fall into local optimum when adjusting the computing resources of IoT devices, and then realizes the scheduling strategy of massive IoT devices. Finally, the experimental verification and comparative analysis of our proposed method are carried out. Experimental results show that proposed method is superior to the method based on Game Theory (GT) and the method based on Sub‐Optimal Policy (SOP). Besides, the proposed method can offload more tasks under the same conditions. The average energy consumption of proposed method is lower in 60–240Β GHz frequency band. Moreover, it appears to increase significantly in 60–120Β GHz frequency band, and tends to be stable in 120–240Β GHz frequency band

    Role of Enterprise Alliance in Carbon Emission Reduction Mechanism: An Evolutionary Game Analysis

    No full text
    This study constructs the enterprise alliance game party, designs the mechanism for which the alliance and the government are jointly responsible for enterprise carbon emission reduction work, and explores the evolutionarily stable strategies (ESSs) of the government, enterprises, and enterprise alliance under the policy of carbon tax and carbon trading with numerical simulations. The results show that: (1) the ESSs of the enterprise alliance are always to give technical support to enterprises; (2) the carbon trading price below the critical value can mobilize the enthusiasm of enterprises for honest emission reduction; (3) the carbon tax rate has a negative correlation with enterprise emission reduction behavior; (4) when the underreported carbon emissions of enterprises exceed the critical value, the enterprise will evolve into dishonest emission reduction. The high carbon emissions underreported by enterprises will mobilize the enthusiasm of the government to choose supervision. This study may be of certain reference significance to optimize the existing carbon emission reduction mechanism and achieve win-win cooperation between enterprises and government in the carbon trading market
    • …
    corecore