65 research outputs found

    Cost-effectiveness of the Perioperative Pain Management Bundle a registry-based study.

    Get PDF
    INTRODUCTION The Perioperative Pain Management Bundle was introduced in 10 Serbian PAIN OUT network hospitals to improve the quality of postoperative pain management. The Bundle consists of 4 elements: informing patients about postoperative pain treatment options; administering a full daily dose of 1-2 non-opioid analgesics; administering regional blocks and/or surgical wound infiltration; and assessing pain after surgery. In this study, we aimed to assess the cost-effectiveness of the Bundle during the initial 24 h after surgery. MATERIALS AND METHODS The assessment of cost-effectiveness was carried out by comparing patients before and after Bundle implementation and by comparing patients who received all Bundle elements to those with no Bundle element. Costs of postoperative pain management included costs of the analgesic medications, costs of labor for administering these medications, and related disposable materials. A multidimensional Pain Composite Score (PCS), the effectiveness measurement, was obtained by averaging variables from the International Pain Outcomes questionnaire evaluating pain intensity, interference of pain with activities and emotions, and side effects of analgesic medications. The incremental cost-effectiveness ratio (ICER) was calculated as the incremental change in costs divided by the incremental change in PCS and plotted on the cost-effectiveness plane along with the economic preference analysis. RESULTS The ICER value calculated when comparing patients before and after Bundle implementation was 181.89 RSD (1.55 EUR) with plotted ICERs located in the northeast and southeast quadrants of the cost-effectiveness plane. However, when comparing patients with no Bundle elements and those with all four Bundle elements, the calculated ICER was -800.63 RSD (-6.82 EUR) with plotted ICERs located in the southeast quadrant of the cost-effectiveness plane. ICER values differ across surgical disciplines. CONCLUSION The proposed perioperative pain management Bundle is cost-effective. The cost-effectiveness varies depending on the number of implemented Bundle elements and fluctuates across surgical disciplines

    Eisenstein series for infinite-dimensional U-duality groups

    Get PDF
    We consider Eisenstein series appearing as coefficients of curvature corrections in the low-energy expansion of type II string theory four-graviton scattering amplitudes. We define these Eisenstein series over all groups in the E_n series of string duality groups, and in particular for the infinite-dimensional Kac-Moody groups E9, E10 and E11. We show that, remarkably, the so-called constant term of Kac-Moody-Eisenstein series contains only a finite number of terms for particular choices of a parameter appearing in the definition of the series. This resonates with the idea that the constant term of the Eisenstein series encodes perturbative string corrections in BPS-protected sectors allowing only a finite number of corrections. We underpin our findings with an extensive discussion of physical degeneration limits in D<3 space-time dimensions.Comment: 69 pages. v2: Added references and small additions, to be published in JHE

    Lexical access speed and the development of phonological recoding during immediate serial recall

    Full text link
    A recent Registered Replication Report (RRR) of the development of verbal rehearsal during serial recall revealed that children verbalized at younger ages than previously thought, but did not identify sources of individual differences. Here, we use mediation analysis to reanalyze data from the 934 children ranging from 5 to 10 years old from the RRR for that purpose. From ages 5 to 7, the time taken for a child to label pictures (i.e. isolated naming speed) predicted the child’s spontaneous use of labels during a visually presented serial reconstruction task, despite no need for spoken responses. For 6- and 7-year-olds, isolated naming speed also predicted recall. The degree to which verbalization mediated the relation between isolated naming speed and recall changed across development. All relations dissipated by age 10. The same general pattern was observed in an exploratory analysis of delayed recall for which greater demands are placed on rehearsal for item maintenance. Overall, our findings suggest that spontaneous phonological recoding during a standard short-term memory task emerges around age 5, increases in efficiency during the early elementary school years, and is sufficiently automatic by age 10 to support immediate serial recall in most children. Moreover, the findings highlight the need to distinguish between phonological recoding and rehearsal in developmental studies of short-term memory

    p53 Interaction with JMJD3 Results in Its Nuclear Distribution during Mouse Neural Stem Cell Differentiation

    Get PDF
    Conserved elements of apoptosis are also integral components of cellular differentiation. In this regard, p53 is involved in neurogenesis, being required for neurite outgrowth in primary neurons and for axonal regeneration in mice. Interestingly, demethylases regulate p53 activity and its interaction with co-activators by acting on non-histone proteins. In addition, the histone H3 lysine 27-specific demethylase JMJD3 induces ARF expression, thereby stabilizing p53 in mouse embryonic fibroblasts. We hypothesized that p53 interacts with key regulators of neurogenesis to redirect stem cells to differentiation, as an alternative to cell death. Specifically, we investigated the potential cross-talk between p53 and JMJD3 during mouse neural stem cell (NSC) differentiation. Our results demonstrated that JMJD3 mRNA and protein levels were increased early in mouse NSC differentiation, when JMJD3 activity was readily detected. Importantly, modulation of JMJD3 in NSCs resulted in changes of total p53 protein, coincident with increased ARF mRNA and protein expression. ChIP analysis revealed that JMJD3 was present at the promoter and exon 1 regions of ARF during neural differentiation, although without changes in H3K27me3. Immunoprecipitation assays demonstrated a direct interaction between p53 and JMJD3, independent of the C-terminal region of JMJD3, and modulation of p53 methylation by JMJD3-demethylase activity. Finally, transfection of mutant JMJD3 showed that the demethylase activity of JMJD3 was crucial in regulating p53 cellular distribution and function. In conclusion, JMJD3 induces p53 stabilization in mouse NSCs through ARF-dependent mechanisms, directly interacts with p53 and, importantly, causes nuclear accumulation of p53. This suggests that JMJD3 and p53 act in a common pathway during neurogenesis

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    corecore