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ABSTRACT. Previously, the biocatalytic desymmetrization of dimethyl cyclohex-4-ene-cis-1,2-

dicarboxylate to (1S,2R)-1-(methoxycarbonyl)cyclohex-4-ene-2-carboxylic acid, an important 

intermediate towards the synthesis of biologically active molecules, had been well-characterized 

in terms of pH and temperature optima and several aspects of process performance. Eventually 

this promising reaction could convert 200 mM (40 g·L-1) of substrate with > 99.5% e.e. using the 

recombinant pig liver esterase, ECS-PLE06, at a scale of 8.8 L. However, the precise influence of 

substrate concentration and the poorly water-soluble nature of the substrate (approximately 60 mM 

in water at 25 °C for structurally similar dimethyl 1,4-cyclohexanedicarboxylate) remained 

elusive. Therefore, this work focuses on using a recently published methodology based on reaction 

trajectory analysis to identify mass transfer limitations in this reaction. With the constraints of 

mass transfer on space-time yield considered, it was possible to evaluate and improve biocatalyst 

yield (mass of product per mass of biocatalyst) through the use of higher substrate concentrations. 

Ultimately the complete conversion of approximately 75 g·L-1 substrate was achieved in 3.65 h 

yielding an excellent productivity of 20 g·L-1·h-1 with a biocatalyst yield of 4.36 g·gbiocat
-1. This 

work also highlights the simplicity of applying a reaction trajectory analysis methodology, 

importance of scale during reaction characterizations and identifies future directions for reaction 

improvement to address substrate supply and product inhibition/deactivation.

KEYWORDS. Biocatalysis; recombinant Pig Liver Esterase (PLE); Reaction Scoping; Kinetic 

Characterizations; Substrate Mass Transfer
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Introduction

Biocatalysis has become an established branch of chemistry in its own right resulting from the 

excellent stereo-, regio- and enantioselectivity of biocatalysts even under mild reaction 

conditions.1,2 Consequentially, biocatalysts can realize sustainable manufacturing processes, 

satisfying 10 of the 12 principles of green chemistry: waste prevention and high atom efficiency 

(avoiding the formation of by-products) through their high selectivity, less hazardous syntheses, 

safer solvents (most often carried out in water), and low energy demand due to their operation 

under mild process conditions, their origin from renewable sugar feedstocks through fermentation, 

avoidance of derivatization, their nature as catalysts and not stoichiometric reagents, the ability to 

apply real-time process analytics to prevent waste, and most importantly, their inherent safety.3 

Additionally, these traits frequently (although not always) infer better process economics. Finally, 

biocatalysts can be further improved by protein engineering, offering an additional degree of 

freedom towards process design. Such improvements are gained through tailoring the amino acid 

sequences of enzymes to enhance stability, activity or selectivity.4 Indeed, numerous biocatalytic 

processes have been successfully commissioned to date, using these approaches.5-7

Conventional catalysis is most often performed in homogeneous gas-phase reactors or organic 

solvents, where reaction scale-up is often dependent on adequate heat transfer and appropriate 

reactor design. For biocatalysis, under mild conditions (ambient temperature, near neutral pH and 

in aqueous-based media), this is less relevant. Instead, the conditions of the reaction become 

important and biocatalytic reaction performance can be estimated (or “scoped”) using a standard 

set of process performance measures (metrics).8 These metrics may be benchmarked against 

industrial requirements, while the importance and value of each respective metric may differ 

depending on the value of the product and target market. It is advantageous to be able to quantify 
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these metrics at a scale as small as possible, in order to allow fast and efficient process evaluation 

using the smallest possible amounts of (often expensive) materials. However, it turns out that in 

many cases these metrics do not scale well. Understanding these limitations of scale-up for 

biocatalysis helps address them during process development.

A major reason for performance changes across scales is due to substrate mass transfer 

limitations. It is well known that enzymes require at least some water to be present in their 

environment to be active.9 Since organic substrates and products of synthetic interest are frequently 

poorly water-soluble, this results in mass transfer limitations.10 This applies also to gas-liquid 

systems, such as the important enzyme-catalyzed oxidations11, due to the particularly low water-

solubility of oxygen. Interestingly, the scale-dependence of gas-liquid mass transfer is different 

from liquid-liquid mass transfer (see Table 1). Mixing is a function of power input, which can vary 

significantly with scale.12 More specifically, it is easier to thoroughly mix a smaller volume to 

achieve good dispersion (high power input per unit volume) than it is to mix a large volume. As 

dispersion increases, so does the specific interfacial area (m-1) of the second phase component 

(smaller gas bubbles or liquid droplets), which leads to improved mass transfer. However, when 

considering gas-liquid mass transfer, an even greater influence is the increased gas hold-up at 

larger scales, allowing an increase in overall volumetric mass transfer coefficient (kLa).13 In 

contrast, liquid-liquid systems are not affected by hold-up because the volumetric component 

remains in the reaction volume unlike gases, which pass through a reactor. Furthermore, liquid-

liquid systems have the ability to be emulsified by adding surfactants resulting in a homogeneous 

medium, which being independent of mixing thereby makes them scale-independent. While solid-

liquid systems are not in focus in this work, similar parallels can be drawn, although they are less 
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dependent on mixing to ensure a high interfacial area and are rather influenced more by initial 

particle size.

Table 1. Effect of scale on gas-liquid and liquid-liquid mass transfer.

Gas-Liquid Mass Transfer Liquid-Liquid Mass transfer

Dispersion (i.e. 
bubble size) Hold-up a

Dispersion (i.e. 
droplet size / 

coalescence) b
Hold-up

Small-scale ↑ ↓↓ ↑ N/A

Large-scale ↓ ↑↑ ↓ N/A

a The extent of effect of hold-up on mass transfer is more or less pronounced for plug-flow or 
well-mixed regimes, respectively.12

b Stable emulsions create a homogeneous medium that will be independent of mixing.

It is therefore important to consider the scale at which reaction assessments are performed 

because some mass transfer limited reactions (e.g. gas-liquid systems) will not proceed at the same 

rate at a small-scale as at larger scales. The most important metrics to evaluate under these 

circumstances are the biocatalyst yield and product concentration. These indicate if the catalyst is 

sufficiently efficient and if enough product can be generated in a reasonable amount of time. Time-

course measurements are an effective means to assess reaction performance and gauge these 

metrics. Recently, a method making use of comparing normalized time-course measurements (or 

reaction trajectories) under different experimental conditions was used to distinguish mass transfer 

limitations from other kinetic effects (e.g. enzyme stability, substrate affinity or intrinsic 

activity).14 Additionally, the mechanism of enzyme deactivation or potential substrate/product 

inhibition can also be identified using such time-course progressions.14-17 Time-course 

progressions also give indication of the expected productivity of a reaction, and already at this 
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stage, reactions that proceed too slowly may be earmarked for improvement. Naturally, only 

metrics assessed at a larger scale can be considered true process metrics, although understanding 

how to gauge a reflection of the metrics at smaller scales is invaluable to the effectiveness of 

process development.

In this work, a recently published procedure of reaction scoping for biocatalysis14 was applied 

to the enantioselective desymmetrization of dimethyl cyclohex-4-ene-cis-1,2-dicarboxylate (1) to 

(1S,2R)-1-(methoxycarbonyl)cyclohex-4-ene-2-carboxylic acid (2) catalyzed by recombinant pig 

liver esterase (rPLE; ECS-PLE06; Scheme 1).18 The monoester product of this reaction is of value 

as a pharmaceutical intermediate towards the synthesis of biologically active molecules19 (some 

examples are shown in Scheme 1)20, the antibiotic plantencin21 as well as some active 

pharmaceutical ingredients in treatments towards HIV22 and cytomegalovirus (Herpes)23. 

Previously, this reaction and enzyme were characterized in terms of pH and temperature optima 

as well as reaction performance.18,24,25 A simple method of pH control was implemented that made 

use of inexpensive sodium bicarbonate degradation in the presence of the carboxylic acid product 

2, thereafter forming CO2 and passing from the reaction medium. This was found to be more 

effective than conventional titration of base to control the pH. In addition, the pH remains stable 

within non-saturated bicarbonate solutions. Eventually this promising reaction showed adequate 

performance to convert substrate concentrations of 200 mM (40 g·L-1) with an enantiomeric excess 

of > 99.5%.18 However, this reaction performance came from a series of improvised experiments 

and the bottleneck towards large-scale production was not determined. On this basis, we argued 

that it would be valuable to perform a bottleneck identification using reaction trajectory analysis14 

to determine the major process limitation. Using time-course measurements in this way we argued 

it would be possible to distinguish the dominating bottleneck to the required performance of ECS-

Page 7 of 24

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

PLE06 under given conditions: either enzyme kinetics, enzyme stability or, more likely, substrate 

mass transfer. With this limitation identified, the reaction could be further up-scaled and its 

suitability for process implementation assessed.

1 2

COOMe

COOMe

COOH

COOMe

H2O CH3OH+ +ECS-PLE06
NaHCO3 (aq)

O

NH3

COO

O

NH
H

H O

anticapsin (+)-aucantene cis-carbapenems

Scheme 1. Desymmetrization of diester 1 to (1S,2R)-monoester 2 catalyzed by recombinant pig 

liver esterase (ECS-PLE06).

Results and Discussion

Understanding the influence of the poorly water-soluble substrate on this system initially 

required a series of time-course experiments with varying enzyme concentrations (expressed as 

dosed activities) to identify potential mass transfer limitations. With this limitation on reaction rate 

considered, process performance metrics were assessed. Further scale-up was then considered with 

the goal of maximizing product concentration.

The first step in this systematic procedure was to elucidate the major reaction limitation by 

varying enzyme loadings at a fixed, moderate substrate dose. Figure 1a shows representative time-

course progressions at different enzyme doses at a fixed substrate concentration of 80 mM. 

Normalizing the time axis by the varied parameter (enzyme activity) reveals that the reaction 

becomes substrate mass transfer limited at enzyme doses above ca. 6 U·mL-1, since the reaction 
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9

trajectories diverge (Figure 1b). Interestingly, the product was found to have a beneficial effect by 

better dispersing the substrate in the reaction medium since it acts as an emulsifier. Likewise, 

methanol was also formed as a by-product, which would (at higher concentrations) help improve 

substrate solubility in the medium (and thereby reduce mass transfer limitations). The slight 

improvement in reaction rate due to these factors can be observed after initial product formation, 

especially at the lowest enzyme doses.

Figure 1. (a) Conversion as a function of time for the ECS-PLE06 catalyzed reaction of 80 mM 

diester 1 to monoester 2 using 40 mL saturated NaHCO3 as a buffer (pH 8.15) at 40 °C in a stirred 

round bottom flask (left). (b) Data replotted with the x-axis normalized by enzyme concentration 

to reveal the major process limitation (right). ECS-PLE06 concentrations, [E0], were varied as 

follows: ● – 1.54 U·mL-1, ■ – 2.99 U·mL-1, + – 4.50 U·mL-1, * – 5.94 U·mL-1, ♦ – 8.72 U·mL-1, 

▲ – 11.37 U·mL-1.

Figure 2 is a plot of space-time yield and biocatalyst yield as a function of enzyme activity. 

According to Figure 2, the upper limit of productivity due to substrate mass transfer limitations is 

21 g·L-1·h-1. Clearly, the expected linear response of space-time yield to enzyme activity no longer 

holds beyond this point, indicating a non-enzyme related limitation. On the other hand, biocatalyst 
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yield appears to improve at lower enzyme concentrations because the same amount of substrate is 

still converted, even though the reactions take longer. Another way of improving the biocatalyst 

yield is to increase the substrate loading thereby converting more substrate with the same amount 

of enzyme. In this way, a better reflection of biocatalyst yield is obtained because, in reality, 

industrial processes should operate with the highest possible space-time yield in order to afford 

cost-effective processes (shorter batches and smaller reaction volumes). However, the most 

representative biocatalyst yield should still be evaluated under conditions where the reaction is not 

kinetically limited. This is especially important to consider in cases such as this, which are limited 

by liquid-liquid mass transfer.

Figure 2. Space-time yield (STY; blue ●) and biocatalyst yield (red ▲) as a function of rPLE dose 

(presented as activity) after the full conversion of 80 mM substrate. The dashed line indicates 

linearity through the origin. Data in yellow are those obtained after the full conversion of 400 mM 

substrate.
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Hence, the substrate concentration was increased 5-fold (400 mM) and an enzyme dose of 

6 U·mL-1 was maintained because mass transfer limitations only occurred at higher enzyme 

concentrations. Full conversion and no kinetic limitations were observed at this higher substrate 

concentration, which was confirmed by the overlap of trajectories on a normalized time axis plot 

(Figure 3). The resultant 4.9-fold improvement in biocatalyst yield from 0.89 to 4.36 g·gbiocat
-1 at 

an almost identical maximum space-time yield is shown in Figure 2.

Figure 3. Reaction with 80 mM substrate (●) and 400 mM substrate (▲) in 40 mL saturated 

NaHCO3 buffer (pH 8.15) at 40 °C both with an enzyme dose of 6 U mL-1 on a normalized time-

axis plot.

In order to investigate the potential of further increasing substrate concentration, it was necessary 

to marginally increase the scale of reaction by operating in a 250 mL stirred tank reactor. At this 

scale, better control and measurement of the reaction environment was made possible through 

defined stirring, temperature and pH control. Substrate concentrations greater than 500 mM caused 

the enzyme to agglomerate and denature. Therefore, three 400 mM batch doses of 1 were supplied 

Page 11 of 24

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

at 3 h intervals in a fed-batch manner to mimic the previous reaction profiles observed at smaller 

scale. Nevertheless, full conversion was not reached even after 24 h (data not shown). In order to 

rule out potential substrate inhibition caused by too high single substrate concentration doses, a 

constant feed of substrate at 5.81 g·h-1 was instead supplied to the reactor by use of a syringe pump. 

This would hypothetically result in a calculated 1.19 M (225 g·L-1) product and a space-time yield 

of 22.0 g·L-1·h-1 in a 9 h reaction, assuming the reaction is not limited. However, during a fed-

batch reaction, product formation ceased after 7 h, after which substrate accumulated at a rate equal 

to that of the pump feed rate (Figure 4a). Since the mass balance of substrate and product closed 

throughout the reaction, this result indicated that indeed the reaction had stopped after 400 mM 

product formation (Figure 4b). We postulated therefore that either enzyme stability or product 

inhibition could be the cause. In order to confirm this, the end-point reaction medium was dosed 

with a fresh 6 U·mL-1 of ECS-PLE06 and left to incubate at 40 °C for 48 h. Conversion was only 

marginally improved by approximately 10% (data not shown) indicating that product inhibition or 

product induced deactivation was the most likely cause of activity loss.
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13

Figure 4. (a) Fed-batch conversion of 1.2 M diester 1 (●) to monoester 2 (▲) in a 250 mL (end 

volume) stirred tank reactor. pH was maintained with saturated NaHCO3 buffer (pH 8.15) at 40 °C 

and included an enzyme dose of 6 U·mL-1 (above). (b) Mass balance corresponding to the sum of 

substrate and product in the reaction medium (●) the actual fed-batch rate of substrate supply to 

the reactor by a syringe pump (below). Error bars reflect 95% confidence intervals (n = 3).

In order to test this further, the time-dependent stability of ECS-PLE06 was evaluated with 

respect to temperature (40 °C), high buffer strength solutions (saturated NaHCO3), and by-product 

methanol concentrations of up to 5% (v/v) (corresponding to a high molar concentration of 

ca. 1.3 M; Figure 5). ECS-PLE06 showed a negligible activity loss after 24 h in the presence of all 

environmental factors. Furthermore, the enzyme gained activity whilst being incubated in NaHCO3 
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14

buffer and methanol, which might point towards an affinity of ECS-PLE06 for strongly buffered 

environments containing methanol. This confirmed that the remaining limitation to be addressed 

was product inhibition or product induced deactivation.

Figure 5. Stability of ECS-PLE06 as a function of time at room temperature in 50 mM phosphate 

buffer at pH 7.5 (control, solid bars), at 40 °C in 50 mM phosphate buffer (pH 7.5; diagonal striped 

bars), at 40 °C in saturated NaHCO3 buffer (1.14 M, pH 8.15; opaque bars), and with 5% (v/v) 

methanol (~1.3 M) at 40 °C in saturated NaHCO3 buffer (horizontal striped bars). Error bars reflect 

95% confidence intervals (n = 4).

In situ product removal (ISPR) techniques could potentially be applied to address product 

inhibition/deactivation. The method of reactive crystallization would be particularly interesting 

because it could be implemented through the selection of an appropriate metal bicarbonate salt. In 

this way, the charged product anion could potentially precipitate from solution when bound to the 

metal cation without negatively affecting enzyme performance. Furthermore, the bicarbonate ion 

would also help buffer the pH during reaction presenting a potent ‘self-healing’ system. This 

method of reactive crystallization ISPR was recently demonstrated with a transaminase reaction 

to improve the thermodynamic equilibrium to favor product formation.26 Ultimately, product in 
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the form of solid precipitates resulted in a product concentration in excess of 1 M. For the case of 

the rPLE reaction, two-liquid phase ISPR approaches would not be feasible because the substrate, 

being hydrophobic, would partition more strongly than the product into an organic phase. Instead, 

further focus could be made towards more expensive ISPR methods such as selective ion exchange 

resins27,28 or charged membranes29. Another possibility could be to remove the product in an 

external loop through pH swing (precipitation) or cooling crystallization, although this is less 

likely to be feasible since the excess bicarbonate would need to be removed and such a system 

would also require a means to retain the biocatalyst from the harsh conditions in the external 

loop.30,31 The reaction itself might be also further improved by the use of specific ionic liquids as 

additives.32

Conclusions

Through the application of a standardized methodology relying on reaction trajectory analysis, 

it was concluded that the reaction was limited by mass transfer. This was due to the low solubility 

of substrate in the water-based medium. ECS-PLE06 is a robust enzyme that is highly thermostable 

and tolerant towards solvents25, therefore mass transfer limits could still potentially be reduced by 

increasing temperature or adding water-miscible co-solvents to this system to improve substrate 

solubility. This specific system also showcases the elegance of ‘self-healing’ systems where pH 

can easily be maintained by the reaction medium itself through an oversaturated, benign carbonate 

buffer reaction with product cation species.

In this work improved performance of ECS-PLE06 was achieved with final process metrics 

summarized in Table 2. These results point towards a promising biocatalytic reaction of up to 

0.4 M (75 g·L-1) batches of product with an expected biocatalyst yield and productivity of 

4.36 g·gbiocat
-1 and 20.2 g·L-1·h-1, respectively. Beyond this relatively high concentration limit, 

Page 15 of 24

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

product inhibition or product induced inactivation will prevent further conversion of substrate. If 

higher product concentrations are required, then alternative ISPR techniques must be considered. 

Furthermore, substrate must be dosed in a fed-batch manner to avoid enzyme agglomeration and 

activity loss above 500 mM substrate. 

Table 2. Process performance metrics for the ECS-PLE06-catalyzed desymmetrization of 1 to 2.

Reaction conversion 100%

Product concentration 74 g·L-1

Space-time yield 20.2 g·L-1·h-1

Specific productivity 1.20 g·gbiocat
-1·h-1

Biocatalyst yield 4.36 g·gbiocat
-1

Materials and Methods

REAGENTS. All reagents were of analytical grade and supplied by Sigma-Aldrich (St. Louis, 

MO). Dimethyl cyclohex-4-ene-cis-1,2-dicarboxylate (1), (1S,2R)-1-(methoxycarbonyl)cyclohex-

4-ene-2-carboxylic acid (2) and lyophilized rPLE (ECS-PLE06; EC 3.1.1.1; ≥ 0.3 U·mg-1) were 

kindly supplied by Enzymicals AG (Greifswald, Germany).

ACTIVITY ASSAY. The activity of pig liver esterase was quantified through 

spectrophotometric measurements of the degradation of p-nitrophenyl acetate (pNPA) to p-

nitrophenolate. Reaction mixtures contained 850 μL of phosphate buffer (pH 7.5, 50 mM), 50 μL 

of enzyme stock solution and 100 μL of pNPA in DMSO (10 mM). Initial rate measurements were 

taken at 400 nm (ε30 °C = 17759 L·mol-1·cm-1) over 100 s at 30 °C. One unit (U) of esterase activity 

was defined as the generation of 1 μmol of p-nitrophenolate per minute under the standard activity 
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assay conditions. Measurements were made using a UV-vis spectrophotometer (Specord 50, 

Analytik Jena AG, Jena, Germany). Reference samples contained distilled H2O and negative 

controls were performed in the absence of enzyme.

SMALL-SCALE APPARATUS. Small-scale reactions were performed in a 100 mL round 

bottom flask using a magnetic stirrer for mixing and an external water bath for temperature control 

at 40 °C. 40 mL of saturated NaHCO3 buffer (pH 8.15) was used to control the pH. ECS-PLE06 

(≥ 0.3 U·mg-1) was dosed to this medium, and the reaction was started by the addition of 0.6 g of 

1 (80 mM). Samples (500 μL) were taken periodically and concentrations of 1 and 2 were 

determined using the procedure detailed in the analytical methods section. Reaction progress could 

be indirectly followed by use of a CO2 bubble counter fixed to the top of the apparatus.

FED-BATCH 250 mL STIRRED TANK REACTOR. Fed-batch experiments were performed 

in a 300 mL glass jacketed stirred tank reactor (STR). 42 g of NaHCO3 (corresponding to 2 M 

final concentration, which translates to a saturated solution with excess solid NaHCO3) was added 

with 1500 U of ECS-PLE06 (6 U·mL-1 final concentration) to 190 mL distilled H2O. Temperature 

was maintained at 40 °C by use of an external CC-K6 cryostat (Huber, Offenburg, Germany) and 

mixing ensured by a pitched 4-blade turbine with overhead stirring motor at 300 rpm. pH was 

measured by an InLab Semi-Micro electrolyte sensor (Mettler Toledo, Colombus, OH) and was 

found to be 8.15 ± 0.38 (mean ± SD) over all experiments using the sodium hydrogen carbonate 

buffered system. 60 mL of substrate 1 (corresponding to a final concentration of 1.2 M) was fed 

by a R99-E syringe pump (Razel Scientific Instruments, Fairfax, VT) over the first 10 hours to 

make up a final reaction volume of 250 mL. Triplicate samples (500 μL) were taken periodically 

over 24 h and concentrations of substrate and product were determined using the procedure 

detailed in the analytical methods section.
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ANALYTICAL METHODS. Concentrations of 1 and 2 were quantified by GC-FID (TRACE 

1310 Series, Thermo Fisher Scientific, Waltham, MA). Triplicate samples of 500 μL were taken 

from reaction media and acidified with 500 μL of concentrated HCl (1:1 volumes) to render 2 

insoluble in the aqueous environment and to denature residual protein activity. Samples were then 

diluted and extracted with methyl tert-butyl ether (MTBE) containing n-decane (25 mM) as an 

internal standard by vortexing on the highest setting and phase separation followed by 

centrifugation. 1 μL of the organic phase fraction was injected into a TR-1701 column (30 m x 

0.25 mm x 0.25 μm; Thermo Fisher Scientific, Waltham, MA) where the oven temperature was 

ramped from 130 °C to 200 °C at a rate of 5 °C min-1 and thereafter held at an isotherm of 200 °C 

for 1 min. Injector and detector temperatures were maintained at 250 °C throughout. The carrier 

gas flow rate was 1.2 mL min-1 with a split ratio of 35:1. Experimental substrate and product 

concentrations were determined using a standard curve generated by subjecting samples of known 

concentrations to the same acidification/solvent extraction procedure.
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