2,123 research outputs found

    Superfluidity versus localization in bulk 4He at zero temperature

    Full text link
    We present a zero-temperature quantum Monte Carlo calculation of liquid 4^4He immersed in an array of confining potentials. These external potentials are centered in the lattice sites of a fcc solid geometry and, by modifying their well depth and range, the system evolves from a liquid phase towards a progressively localized system which mimics a solid phase. The superfluid density decreases with increasing order, reaching a value ρs/ρ=0.079(16) \rho_{\rm s}/\rho = 0.079(16) when the Lindemann's ratio of the model equals the experimental value for solid 4^4He.Comment: 5 pages,5 figure

    Mechanism for nonequilibrium symmetry breaking and pattern formation in magnetic films

    Full text link
    Magnetic thin films exhibit a strong variation in properties depending on their degree of disorder. Recent coherent x-ray speckle experiments on magnetic films have measured the loss of correlation between configurations at opposite fields and at the same field, upon repeated field cycling. We perform finite temperature numerical simulations on these systems that provide a comprehensive explanation for the experimental results. The simulations demonstrate, in accordance with experiments, that the memory of configurations increases with film disorder. We find that non-trivial microscopic differences exist between the zero field spin configuration obtained by starting from a large positive field and the zero field configuration starting at a large negative field. This seemingly paradoxical beahvior is due to the nature of the vector spin dynamics and is also seen in the experiments. For low disorder, there is an instability which causes the spontaneous growth of line-like domains at a critical field, also in accord with experiments. It is this unstable growth, which is highly sensitive to thermal noise, that is responsible for the small correlation between patterns under repeated cycling. The domain patterns, hysteresis loops, and memory properties of our simulated systems match remarkably well with the real experimental systems.Comment: 12 pages, 10 figures Added comparison of results with cond-mat/0412461 and some more discussio

    Magnetic Properties of a Two-Dimensional Mixed-Spin System

    Full text link
    Using a Langmuir-Blodgett (LB) synthesis method, novel two-dimensional (2D) mixed-spin magnetic systems, in which each magnetic layer is both structurally and magnetically isolated, have been generated. Specifically, a 2D Fe-Ni cyanide-bridged network with a face-centered square grid structure has been magnetically and structurally characterized. The results indicate the presence of ferromagnetic exchange interactions between the Fe3+^{3+} (S=1/2S=1/2) and Ni2+^{2+} (S=1) centers.Comment: 2 pages, 3 figs., submitted 23rd International Conference on Low Temperature Physics (LT-23), Aug. 200

    Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine ß-lactoglobulin

    Get PDF
    peer-reviewedThe angiotensin-I-converting enzyme (ACE) inhibitory activity of a tryptic digest of bovine β-lactoglobulin (β-lg) was investigated. Intact β-lg essentially did not inhibit ACE while the tryptic digest gave an 84.3% inhibition of ACE. Peptide material eluting between 20 and 25% acetonitrile during C18 solid-phase extraction of the β-lg tryptic digest inhibited ACE by 93.6%. This solid-phase extraction fraction was shown by mass spectroscopy to contain β-lg f(142–148). This peptide had an ACE IC50 value of 42.6 μmol/l. The peptide was resistant to further digestion with pepsin and was hydrolysed to a very low extent with chymotrypsin. The contribution of specific amino acid residues within the peptide to ACE inhibitory activity and the potential application of this peptide as a nutraceutical is discussed

    How to identify sex chromosomes and their turnover

    Get PDF
    Although sex is a fundamental component of eukaryotic reproduction, the genetic systems that control sex determination are highly variable. In many organisms the presence of sex chromosomes is associated with female or male development. Although certain groups possess stable and conserved sex chromosomes, others exhibit rapid sex chromosome evolution including transitions between male and female heterogamety, and turnover in the chromosome pair recruited to determine sex. These turnover events have important consequences for multiple facets of evolution, as sex chromosomes are predicted to play a central role in adaptation, sexual dimorphism, and speciation. However, our understanding of the processes driving the formation and turnover of new sex chromosome systems is limited, in part because we lack a complete understanding of inter‐specific variation in the mechanisms by which sex is determined. New bioinformatic methods are making it possible to identify and characterize sex chromosomes in a diverse array of non‐model species, rapidly filling in the numerous gaps in our knowledge of sex chromosome systems across the tree of life. In turn, this growing dataset is facilitating and fueling efforts to address many of the unanswered questions in sex chromosome evolution. Here, we synthesize the available bioinformatic approaches to produce a guide for characterizing sex chromosome system and identity simultaneously across clades of organisms. Furthermore, we survey our current understanding of the processes driving sex chromosome turnover, and highlight important avenues for future research

    Magnetodielectric coupling of infrared phonons in single crystal Cu2_{2}OSeO3_{3}

    Get PDF
    Reflection and transmission as a function of temperature have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu2_{2}OSeO3_{3} utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature (Tc60T_{c}\sim 60~K). Assignments to strong far infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature
    corecore