503 research outputs found

    Evidence for a role of β‐1,3‐glucanase in dicot seed germination

    Get PDF
    Class I β‐1,3‐glucanases are antifungal vacuolar proteins implicated in plant defense that show developmental, hormonal, and pathogenesis‐related regulation. The expression was studied in germinating tobacco seeds of a chimeric β‐glucuronidase (GUS) reporter gene fused to 1.6 kb of the 5′ flanking sequence of the tobacco class I β‐1,3‐glucanase B (GLB) promoter. Histological staining for GUS activity showed that expression of the GLB promoter is highly localized in a specific zone of the endosperm in germinating seeds. The temporal and spatial patterns of GUS and β‐1,3‐glucanase activity found, suggest a novel function for class I β‐1,3‐glucanases during seed germination in a dicotyledonous plant. Copyright © 1994, Wiley Blackwell. All rights reserve

    The frequency of restricted and repetitive behaviours in a community sample of 15 month-old infants

    Get PDF
    Objective: To investigate the frequency and pattern of a wide range of restricted and repetitive behaviors (RRBs) in the second year of life. Method: Parents of 139 15-month-old typically developing infants from a community sample completed the Repetitive Behaviour Questionnaire-2 (RBQ-2), giving information on RRBs (e.g. stereotyped motor movements, sensory interests, routines and rituals and preoccupations with restricted interests) seen in their children. Results: The RBQ-2 was found to be a reliable measure of these behaviors at this age and revealed a high frequency of particular types of repetitive motor movements in 15-month-olds. Conclusion: These findings have implications for the early detection of disorders characterized by high levels of restricted and repetitive behaviors, such as Autism Spectrum Disorder (ASD)

    Myrtucommulone from Myrtus communis: metabolism, permeability, and systemic exposure in rats

    Get PDF
    Nonsteroidal anti-inflammatory drug intake is associated with a high prevalence of gastrointestinal side effects, and severe cardiovascular adverse reactions challenged the initial enthusiasm in cyclooxygenase-2 inhibitors. Recently, it was shown that myrtucommulone, the active ingredient of the Mediterranean shrub Myrtus communis, dually and potently inhibits microsomal prostaglandin E₂ synthase-1 and 5-lipoxygenase, suggesting a substantial anti-inflammatory potential. However, one of the most important prerequisites for the anti-inflammatory effects in vivo is sufficient bioavailability of myrtucommulone. Therefore, the present study was aimed to determine the permeability and metabolic stability in vitro as well as the systemic exposure of myrtucommulone in rats. Permeation studies in the Caco-2 model revealed apparent permeability coefficient values of 35.9 · 10⁻⁶ cm/s at 37 °C in the apical to basolateral direction, indicating a high absorption of myrtucommulone. In a pilot rat study, average plasma levels of 258.67 ng/mL were reached 1 h after oral administration of 4 mg/kg myrtucommulone. We found that myrtucommulone undergoes extensive phase I metabolism in human and rat liver microsomes, yielding hydroxylated and bihydroxylated as well as demethylated metabolites. Physiologically-based pharmacokinetic modeling of myrtucommulone in the rat revealed rapid and extensive distribution of myrtucommulone in target tissues including plasma, skin, muscle, and brain. As the development of selective microsomal prostaglandin E₂ synthase-1 inhibitors represents an interesting alternative strategy to traditional nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors for the treatment of chronic inflammation, the present study encourages further detailed pharmacokinetic investigations on myrtucommulone

    Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense

    Get PDF
    To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- and antisense-RNAs and spawns a massive quantity of 21, 22 and 24 nt viral small RNAs (vsRNAs), comparable to the entire complement of host-encoded small-interfering RNAs and microRNAs. Leader-derived vsRNAs were detected bound to the Argonaute 1 (AGO1) effector protein, unlike vsRNAs from other viral regions. Only negligible amounts of leader-derived vsRNAs were bound to AGO4. Genetic evidence showed that all four Dicer-like (DCL) proteins mediate vsRNA biogenesis, whereas the RNA polymerases Pol IV, Pol V, RDR1, RDR2 and RDR6 are not required for this process. Surprisingly, CaMV titers were not increased in dcl1/2/3/4 quadruple mutants that accumulate only residual amounts of vsRNAs. Ectopic expression of CaMV leader vsRNAs from an attenuated geminivirus led to increased accumulation of this chimeric virus. Thus, massive production of leader-derived vsRNAs does not restrict viral replication but may serve as a decoy diverting the silencing machinery from viral promoter and coding region

    Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense

    Get PDF
    To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- and antisense-RNAs and spawns a massive quantity of 21, 22 and 24 nt viral small RNAs (vsRNAs), comparable to the entire complement of host-encoded small-interfering RNAs and microRNAs. Leader-derived vsRNAs were detected bound to the Argonaute 1 (AGO1) effector protein, unlike vsRNAs from other viral regions. Only negligible amounts of leader-derived vsRNAs were bound to AGO4. Genetic evidence showed that all four Dicer-like (DCL) proteins mediate vsRNA biogenesis, whereas the RNA polymerases Pol IV, Pol V, RDR1, RDR2 and RDR6 are not required for this process. Surprisingly, CaMV titers were not increased in dcl1/2/3/4 quadruple mutants that accumulate only residual amounts of vsRNAs. Ectopic expression of CaMV leader vsRNAs from an attenuated geminivirus led to increased accumulation of this chimeric virus. Thus, massive production of leader-derived vsRNAs does not restrict viral replication but may serve as a decoy diverting the silencing machinery from viral promoter and coding regions

    Molecular characterization of geminivirus-derived small RNAs in different plant species

    Get PDF
    DNA geminiviruses are thought to be targets of RNA silencing. Here, we characterize small interfering (si) RNAs—the hallmarks of silencing—associated with Cabbage leaf curl begomovirus in Arabidopsis and African cassava mosaic begomovirus in Nicotiana benthamiana and cassava. We detected 21, 22 and 24 nt siRNAs of both polarities, derived from both the coding and the intergenic regions of these geminiviruses. Genetic evidence showed that all the 24 nt and a substantial fraction of the 22 nt viral siRNAs are generated by the dicer-like proteins DCL3 and DCL2, respectively. The viral siRNAs were 5′ end phosphorylated, as shown by phosphatase treatments, and methylated at the 3′-nucleotide, as shown by HEN1 miRNA methylase-dependent resistance to β-elimination. Similar modifications were found in all types of endogenous and transgene-derived siRNAs tested, but not in a major fraction of siRNAs from a cytoplasmic RNA tobamovirus. We conclude that several distinct silencing pathways are involved in DNA virus-plant interaction

    Molecular characterization of geminivirus-derived small RNAs in different plant species

    Get PDF
    DNA geminiviruses are thought to be targets of RNA silencing. Here, we characterize small interfering (si) RNAs—the hallmarks of silencing—associated with Cabbage leaf curl begomovirus in Arabidopsis and African cassava mosaic begomovirus in Nicotiana benthamiana and cassava. We detected 21, 22 and 24 nt siRNAs of both polarities, derived from both the coding and the intergenic regions of these geminiviruses. Genetic evidence showed that all the 24 nt and a substantial fraction of the 22 nt viral siRNAs are generated by the dicer-like proteins DCL3 and DCL2, respectively. The viral siRNAs were 5′ end phosphorylated, as shown by phosphatase treatments, and methylated at the 3′-nucleotide, as shown by HEN1 miRNA methylase-dependent resistance to β-elimination. Similar modifications were found in all types of endogenous and transgene-derived siRNAs tested, but not in a major fraction of siRNAs from a cytoplasmic RNA tobamovirus. We conclude that several distinct silencing pathways are involved in DNA virus-plant interactions
    corecore