1,887 research outputs found

    The two-systems account of theory of mind : testing the links to social-perceptual and cognitive abilities

    Get PDF
    According to the two-systems account of Theory of Mind (ToM), understanding mental states of others involves both fast social-perceptual processes, as well as slower, reflexive cognitive operations (Apperly and Butterfill, 2009; Frith and Frith, 2008). To test the respective roles of specific abilities in either of these processes we administered 15 experimental procedures to a large sample of 343 participants, testing ability in face recognition and holistic perception, language, and reasoning. ToM was measured by a set of tasks requiring ability to track and to infer complex emotional and mental states of others from faces, eyes, spoken language and prosody. We used structural equation modeling to test the relative strengths of a social-perceptual (face processing related) and reflexive-cognitive (language and reasoning related) path in predicting ToM ability. The two paths accounted for 58% of ToM variance, thus validating a general two-systems framework. Testing specific predictor paths revealed language and face recognition as strong and significant predictors of ToM. For reasoning, there were neither direct nor mediated effects, albeit reasoning was strongly associated with language (r = 0.73). Holistic face perception also failed to show a direct link with ToM ability, while there was a mediated effect via face recognition. These results highlight the respective roles of face recognition and language for the social brain (Kennedy and Adolphs, 2012), and contribute closer empirical specification of the general two-systems account

    Modelling cell motility and chemotaxis with evolving surface finite elements

    Get PDF
    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/maskae/CV_Warwick/Chemotaxis.html

    Morphogen Transport in Epithelia

    Full text link
    We present a general theoretical framework to discuss mechanisms of morphogen transport and gradient formation in a cell layer. Trafficking events on the cellular scale lead to transport on larger scales. We discuss in particular the case of transcytosis where morphogens undergo repeated rounds of internalization into cells and recycling. Based on a description on the cellular scale, we derive effective nonlinear transport equations in one and two dimensions which are valid on larger scales. We derive analytic expressions for the concentration dependence of the effective diffusion coefficient and the effective degradation rate. We discuss the effects of a directional bias on morphogen transport and those of the coupling of the morphogen and receptor kinetics. Furthermore, we discuss general properties of cellular transport processes such as the robustness of gradients and relate our results to recent experiments on the morphogen Decapentaplegic (Dpp) that acts in the fruit fly Drosophila

    Finding the center reliably: robust patterns of developmental gene expression

    Full text link
    We investigate a mechanism for the robust identification of the center of a developing biological system. We assume the existence of two morphogen gradients, an activator emanating from the anterior, and a co-repressor from the posterior. The co-repressor inhibits the action of the activator in switching on target genes. We apply this system to Drosophila embryos, where we predict the existence of a hitherto undetected posterior co-repressor. Using mathematical modelling, we show that a symmetric activator-co-repressor model can quantitatively explain the precise mid-embryo expression boundary of the hunchback gene, and the scaling of this pattern with embryo size.Comment: 4 pages, 3 figure

    Sierpinski signal generates 1/fα1/f^\alpha spectra

    Full text link
    We investigate the row sum of the binary pattern generated by the Sierpinski automaton: Interpreted as a time series we calculate the power spectrum of this Sierpinski signal analytically and obtain a unique rugged fine structure with underlying power law decay with an exponent of approximately 1.15. Despite the simplicity of the model, it can serve as a model for 1/fα1/f^\alpha spectra in a certain class of experimental and natural systems like catalytic reactions and mollusc patterns.Comment: 4 pages (4 figs included). Accepted for publication in Physical Review

    Strategies and approaches in plasmidome studies—uncovering plasmid diversity disregarding of linear elements?

    Full text link
    The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which—despite their frequent occurrence in a large number of bacteria—are largely neglected in prevalent plasmidome conceptions

    Ältere Menschen in Deutschland: Einkommenssituation und ihr möglicher Beitrag zur Finanzierung der gesetzlichen Rentenversicherung

    Get PDF
    In der derzeitigen Debatte zur Finanzierung der gesetzlichen Rentenversicherung (GRV) werden verschiedene Wege zu einer ausgewogenen Beteiligung sowohl der Beitragszahler als auch der Rentenbezieher diskutiert. Neben einer Aussetzung bzw. Reduktion der Rentenanpassung und einer Anhebung der Regelaltersgrenze besteht auch die Möglichkeit, die Vorschriften zur Besteuerung von Renten neu zu gestalten. Ohnehin hat im März 2002 das Bundesverfassungsgericht (BVerfG) eine Angleichung der Besteuerung von GRV-Renten und Pensionen gefordert. Die "Sachverständigenkommission zur Neuordnung der Altersbesteuerung" schlägt als Einstieg eine Bemessungsgrundlage von 50 % aller Renteneinkünfte vor; langfristig soll eine Vollbesteuerung erreicht werden. Jegliche Rentenreform setzt eine möglichst detaillierte Bestandsaufnahme der Einkommenssituation der aktuellen Rentnergeneration in Deutschland voraus. Empirische Analysen auf Basis der repräsentativen Stichprobe des Sozio-oekonomischen Panels (SOEP) zeigen, dass die verfügbaren Einkommen der älteren Bevölkerung im Durchschnitt nur wenig unter jenen der erwerbsfähigen Jahrgänge liegen. Insbesondere GRV-Rentner mit sonstigem Einkommen (aus Kapitalerträgen, Vermietung und Verpachtung usw.) profitieren von der niedrigen Besteuerung ihrer Sozialversicherungsrenten aufgrund des derzeit steuerfreien geldwerten Vorteils aus Arbeitgeberbeiträgen und Bundeszuschuss. Modellrechnungen zu den Auswirkungen einer sachgerechten Anhebung der steuerlichen Bemessungsgrundlage von GRV-Renten verdeutlichen, dass aufgrund des geltenden Grundfreibetrages nur wenige gut verdienende alte Menschen von einer systematisch gebotenen Besteuerung aller Alterseinkommen tatsächlich betroffen sein würden. Ein Aussetzen der Rentenanpassung träfe hingegen auch Rentner mit geringen Renten.

    Existence and Stability of a Spike in the Central Component for a Consumer Chain Model

    Get PDF
    We study a three-component consumer chain model which is based on Schnakenberg type kinetics. In this model there is one consumer feeding on the producer and a second consumer feeding on the first consumer. This means that the first consumer (central component) plays a hybrid role: it acts both as consumer and producer. The model is an extension of the Schnakenberg model suggested in \cite{gm,schn1} for which there is only one producer and one consumer. It is assumed that both the producer and second consumer diffuse much faster than the central component. We construct single spike solutions on an interval for which the profile of the first consumer is that of a spike. The profiles of the producer and the second consumer only vary on a much larger spatial scale due to faster diffusion of these components. It is shown that there exist two different single spike solutions if the feed rates are small enough: a large-amplitude and a small-amplitude spike. We study the stability properties of these solutions in terms of the system parameters. We use a rigorous analysis for the linearized operator around single spike solutions based on nonlocal eigenvalue problems. The following result is established: If the time-relaxation constants for both producer and second consumer vanish, the large-amplitude spike solution is stable and the small-amplitude spike solution is unstable. We also derive results on the stability of solutions when these two time-relaxation constants are small. We show a new effect: if the time-relaxation constant of the second consumer is very small, the large-amplitude spike solution becomes unstable. To the best of our knowledge this phenomenon has not been observed before for the stability of spike patterns. It seems that this behavior is not possible for two-component reaction-diffusion systems but that at least three components are required. Our main motivation to study this system is mathematical since the novel interaction of a spike in the central component with two other components results in new types of conditions for the existence and stability of a spike. This model is realistic if several assumptions are made: (i) cooperation of consumers is prevalent in the system, (ii) the producer and the second consumer diffuse much faster than the first consumer, and (iii) there is practically an unlimited pool of producer. The first assumption has been proven to be correct in many types of consumer groups or populations, the second assumption occurs if the central component has a much smaller mobility than the other two, the third assumption is realistic if the consumers do not feel the impact of the limited amount of producer due to its large quantity. This chain model plays a role in population biology, where consumer and producer are often called predator and prey. This system can also be used as a model for a sequence of irreversible autocatalytic reactions in a container which is in contact with a well-stirred reservoir

    Subbarrel patterns in somatosensory cortical barrels can emerge from local dynamic instabilities

    Get PDF
    Complex spatial patterning, common in the brain as well as in other biological systems, can emerge as a result of dynamic interactions that occur locally within developing structures. In the rodent somatosensory cortex, groups of neurons called "barrels" correspond to individual whiskers on the contralateral face. Barrels themselves often contain subbarrels organized into one of a few characteristic patterns. Here we demonstrate that similar patterns can be simulated by means of local growth-promoting and growth-retarding interactions within the circular domains of single barrels. The model correctly predicts that larger barrels contain more spatially complex subbarrel patterns, suggesting that the development of barrels and of the patterns within them may be understood in terms of some relatively simple dynamic processes. We also simulate the full nonlinear equations to demonstrate the predictive value of our linear analysis. Finally, we show that the pattern formation is robust with respect to the geometry of the barrel by simulating patterns on a realistically shaped barrel domain. This work shows how simple pattern forming mechanisms can explain neural wiring both qualitatively and quantitatively even in complex and irregular domains. © 2009 Ermentrout et al
    corecore