1,480 research outputs found

    Electronic structure of fully epitaxial Co2TiSn thin films

    Full text link
    In this article we report on the properties of thin films of the full Heusler compound Co2TiSn prepared by DC magnetron co-sputtering. Fully epitaxial, stoichiometric films were obtained by deposition on MgO (001) substrates at substrate temperatures above 600{\deg}C. The films are well ordered in the L21 structure, and the Curie temperature exceeds slightly the bulk value. They show a significant, isotropic magnetoresistance and the resistivity becomes strongly anomalous in the paramagnetic state. The films are weakly ferrimagnetic, with nearly 1 \mu_B on the Co atoms, and a small antiparallel Ti moment, in agreement with theoretical expectations. From comparison of x-ray absorption spectra on the Co L3/L2 edges, including circular and linear magnetic dichroism, with ab initio calculations of the x-ray absorption and circular dichroism spectra we infer that the electronic structure of Co2TiSn has essentially non-localized character. Spectral features that have not been explained in detail before, are explained here in terms of the final state band structure.Comment: 11 pages, 8 figure

    Ferrimagnetism and disorder in epitaxial Mn(2-x)Co(x)VAl thin films

    Full text link
    The quaternary full Heusler compound Mn(2-x)Co(x)VAl with x = 1 is predicted to be a half-metallic antiferromagnet. Thin films of the quaternary compounds with x = 0...2 were prepared by DC and RF magnetron co-sputtering on heated MgO (001) substrates. The magnetic structure was examined by x-ray magnetic circular dichroism and the chemical disorder was characterized by x-ray diffraction. Ferrimagnetic coupling of V to Mn was observed for Mn2VAl (x = 0). For x = 0.5, we also found ferrimagnetic order with V and Co antiparallel to Mn. The observed reduced magnetic moments are interpreted with the help of band structure calculations in the coherent potential approximation. Mn2VAl is very sensitive to disorder involving Mn, because nearest-neighbor Mn atoms couple anti-ferromagnetically. Co2VAl has B2 order and has reduced magnetization. In the cases with x >= 0.9 conventional ferromagnetism was observed, closely related to the atomic disorder in these compounds.Comment: 10 pages, 4 figure

    Combining theory and experiment to characterize the voltammetric behavior of nickel anodes in the Simons process

    Get PDF
    The Simons process, otherwise known as the electrochemical fluorination (ECF) method, is widely used in industry to electrolytically synthesize chemicals for various purposes. Even to this day, the exact mechanism of the ECF reaction remains unknown, but is believed to involve the formation of an anodic nickel fluoride film with highly oxidized nickel centers. In this study, experiments and density functional theory calculations are combined to characterize the initial anodic peak occurring at potentials typically required in an ECF cell. NiF2 is believed to form a passivating layer at low potentials. The calculations show that a potential of +3.1 V is required to oxidize surface Ni2+ centers to Ni3+. This is in good agreement with the measured anodic peak at +3.57 V

    Life-Detection Technologies for the Next Two Decades

    Full text link
    Since its inception six decades ago, astrobiology has diversified immensely to encompass several scientific questions including the origin and evolution of Terran life, the organic chemical composition of extraterrestrial objects, and the concept of habitability, among others. The detection of life beyond Earth forms the main goal of astrobiology, and a significant one for space exploration in general. This goal has galvanized and connected with other critical areas of investigation such as the analysis of meteorites and early Earth geological and biological systems, materials gathered by sample-return space missions, laboratory and computer simulations of extraterrestrial and early Earth environmental chemistry, astronomical remote sensing, and in-situ space exploration missions. Lately, scattered efforts are being undertaken towards the R&D of the novel and as-yet-space-unproven life-detection technologies capable of obtaining unambiguous evidence of extraterrestrial life, even if it is significantly different from Terran life. As the suite of space-proven payloads improves in breadth and sensitivity, this is an apt time to examine the progress and future of life-detection technologies.Comment: 6 pages, the white paper was submitted to and cited by the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Univers

    Resonance Effects in the Nonadiabatic Nonlinear Quantum Dimer

    Full text link
    The quantum nonlinear dimer consisting of an electron shuttling between the two sites and in weak interaction with vibrations, is studied numerically under the application of a DC electric field. A field-induced resonance phenomenon between the vibrations and the electronic oscillations is found to influence the electronic transport greatly. For initially delocalization of the electron, the resonance has the effect of a dramatic increase in the transport. Nonlinear frequency mixing is identified as the main mechanism that influences transport. A characterization of the frequency spectrum is also presented.Comment: 7 pages, 6 figure

    Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Biomacromolecules, copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/pdf/10.1021/bm701055k.A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype

    Probing the Excitations of a Lieb-Liniger Gas from Weak to Strong Coupling

    Get PDF
    We probe the excitation spectrum of an ultracold one-dimensional Bose gas of Cesium atoms with repulsive contact interaction that we tune from the weakly to the strongly interacting regime via a magnetic Feshbach resonance. The dynamical structure factor, experimentally obtained using Bragg spectroscopy, is compared to integrability-based calculations valid at arbitrary interactions and finite temperatures. Our results unequivocally underly the fact that hole-like excitations, which have no counterpart in higher dimensions, actively shape the dynamical response of the gas.Comment: 9 pages, 10 figure

    Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence

    Get PDF
    New consent management platforms (CMPs) have been introduced to the web to conform with the EU's General Data Protection Regulation, particularly its requirements for consent when companies collect and process users' personal data. This work analyses how the most prevalent CMP designs affect people's consent choices. We scraped the designs of the five most popular CMPs on the top 10,000 websites in the UK (n=680). We found that dark patterns and implied consent are ubiquitous; only 11.8% meet the minimal requirements that we set based on European law. Second, we conducted a field experiment with 40 participants to investigate how the eight most common designs affect consent choices. We found that notification style (banner or barrier) has no effect; removing the opt-out button from the first page increases consent by 22--23 percentage points; and providing more granular controls on the first page decreases consent by 8--20 percentage points. This study provides an empirical basis for the necessary regulatory action to enforce the GDPR, in particular the possibility of focusing on the centralised, third-party CMP services as an effective way to increase compliance.Comment: 13 pages, 3 figures. To appear in the Proceedings of CHI '20 CHI Conference on Human Factors in Computing Systems, April 25--30, 2020, Honolulu, HI, US
    • …
    corecore