358 research outputs found

    3D-Printing of ceramic filaments with ductile metallic cores

    Get PDF
    The additive manufacturing of composite structures can open possibilities in the design and fabrication of devices but also demands new approaches. In this work, we use thermally reversible pastes to fabricate ceramic matrix (Al2O3) composites reinforced with continuous metallic fibres (steel). The approach is based on the micro-extrusion of ceramic–metal filaments with core–shell and layered arrangements. These filaments are employed in the additive manufacturing of dense and light-weight cellular structures that combine the stiffness and strength of the ceramic shell with the fracture resistance and energy absorption capabilities provided by the metal core. The approach can be used to extrude filaments with thin porous interlayers separating the core and the shells to create a weak fibre/matrix interphase. The cellular structures fabricated with these filaments exhibit higher compressive strengths and energy absorption capabilities than those fabricated from pure ceramics. The works of fracture of the dense composites are one to two orders of magnitude above those of the ceramic matrix (103 J/m2) while the bending strengths remain comparable to those of 3D printed alumina (200–350 MPa). The technique could be easily extended to other material combinations opening new opportunities in the additive manufacturing of multi-material parts and devices

    Effect of grain orientation and magnesium doping on ÎČ-tricalcium phosphate resorption behavior

    Get PDF
    The efficiency of calcium phosphate (CaP) bone substitutes can be improved by tuning their resorption rate. The influence of both crystal orientation and ion doping on resorption is here investigated for beta-tricalcium phosphate (ÎČ-TCP). Non-doped and Mg-doped (1 and 6 mol%) sintered ÎČ-TCP samples were immersed in acidic solution (pH 4.4) to mimic the environmental conditions found underneath active osteoclasts. The surfaces of ÎČ-TCP samples were observed after acid-etching and compared to surfaces after osteoclastic resorption assays. ÎČ-TCP grains exhibited similar patterns with characteristic intra-crystalline pillars after acid-etching and after cell-mediated resorption. Electron BackScatter Diffraction analyses, coupled with Scanning Electron Microscopy, Inductively Coupled Plasma–Mass Spectrometry and X-Ray Diffraction, demonstrated the influence of both grain orientation and doping on the process and kinetics of resorption. Grains with c-axis nearly perpendicular to the surface were preferentially etched in non-doped ÎČ-TCP samples, whereas all grains with simple axis (a, b or c) nearly normal to the surface were etched in 6 mol% Mg-doped samples. In addition, both the dissolution rate and the percentage of etched surface were lower in Mg-doped specimens. Finally, the alignment direction of the intra-crystalline pillars was correlated with the preferential direction for dissolution. Statement of significance: The present work focuses on the resorption behavior of calcium phosphate bioceramics. A simple and cost-effective alternative to osteoclast culture was implemented to identify which material features drive resorption. For the first time, it was demonstrated that crystal orientation, measured by Electron Backscatter Diffraction, is the discriminating factor between grains, which resorbed first, and grains, which resorbed slower. It also elucidated how resorption kinetics can be tuned by doping ÎČ-tricalcium phosphate with ions of interest. Doping with magnesium impacted lattice parameters. Therefore, the crystal orientations, which preferentially resorbed, changed, explaining the solubility decrease. These important findings pave the way for the design of optimized bone graft substitutes with tailored resorption kinetics

    Electron transport in crystalline PCBM-like fullerene derivatives: a comparative computational study

    No full text
    We present an extensive study of electron transport (ET) in several crystal forms of phenyl-C61-butyric acid methyl ester (PCBM) and 1-thienyl-C61-butyric acid methyl ester (ThCBM) fullerene derivatives. Our calculations are based on a localized representation of the electronic states. Orbital couplings, site energies and reorganization energies have been calculated using various density functional and semi-empirical techniques and used within the Landau–Zener, Marcus and Marcus–Levich–Jortner expressions to evaluate electron transfer rates. Electron mobilities have been then estimated by kinetic Monte Carlo (KMC) simulations. The adiabaticity of electron transfer directions within the different crystal structures has also been verified using the Landau–Zener expression. Finally, the role of low energy virtual orbitals of the fullerene molecules has been investigated using charge transport networks of increasing complexities. Our results show that these molecules may form one-, two- or three-dimensional percolation networks and that their higher energy orbitals often participate in ET. The highest mobility values were obtained for the crystal structure of ThCBM and are comparable to experimental values

    Liming impacts barley yield over a wide concentration range of soil exchangeable cations

    Get PDF
    Liming has widespread and significant impacts on soil processes and crop responses. The aim of this study was to describe the relationships between exchangeable cation concentrations in soil and the relative yield of spring barley. The hypothesis was that yield is restricted by the concentration of a single exchangeable cation in the soil. For simplicity, we focused on spring barley which was grown in nine years of a long-term experiment at two sites (Rothamsted and Woburn). Four liming rates were applied and in each year the relative yield (RY) and the concentrations of exchangeable cations were assessed. Liming had highly significant effects on the concentrations of most exchangeable cations, except for Cu and K. There were significant negative relationships (either linear or exponential) between the exchangeable concentrations of Mn, Cd, Cr, Al, Fe, Cu, Co, Zn and Ni in soil and soil pH. The relationships between RY and the concentrations of selected exchangeable cations (Mn, Ca and Al) were described well using log-logistic relationships. For these cations a significant site effect was probably due to fundamental differences in soil properties. At both sites the concentrations of exchangeable soil Al were excessive ([ 7.5 mg kg-1) and were most likely responsible for reduced barley yields (where RY B 0.5) with soil acidification. At Rothamsted barley yield was nonlimited (where RY C 1) at soil exchangeable Mn concentrations (up to 417 mg kg-1) greater than previously considered toxic, which requires further evaluation of critical Mn concentrations

    Understanding the key parameters for the rational design of layered oxide materials by composite sol-gel procedures

    Get PDF
    Previous works have well demonstrated that particle size of the filler used in layered oxide formulation is the first important parameter and must be decreased below 5 ÎŒm (Agrafiotis, 1999-2000 [10]). But once the particle size is set what are the next formulation parameters to highlight as critical? How do we improve cohesion and adhesion of the coatings? To highlight the key parameters driving the quality of coating, a model layered oxide material was prepared inside a pan granulator. The model composite sol gel formulation is based on boehmite nanoparticles (binder) and amonomodal two micrometer grain size gamma alumina (filler) which is applied onto alpha alumina beads substrate. The influences of the wetting method and relative amount of filler and binderwere investigated. Extensive characterization and imaging of the layered materials (SEM, Cryo-SEM, EPMA, Washburn test, mechanical tests, Hg-porosimetry) were used in order to follow the microstructure evolution of coating during and at the end of drying. Several crack propagation schemes were observed and explained qualitatively. Overall quality of coating is mainly related to the sol-gel transition of the binder. It defines if prior to shaping, the binder primer will be able to improve the coating adhesion and it defines also the nature and extent of damages that the coating undergoes during drying. The mechanical properties of layered oxide materials obtained using composite sol-gel formulation are definitely correlated with the binder gel shrinkage during drying
    • 

    corecore