52 research outputs found

    Strong Convergence Theorems for a Finite Family of Nonexpansive Mappings

    Get PDF
    We modified the classic Mann iterative process to have strong convergence theorem for a finite family of nonexpansive mappings in the framework of Hilbert spaces. Our results improve and extend the results announced by many others

    Moudafi's Viscosity Approximations with Demi-Continuous and Strong Pseudo-Contractions for Non-Expansive Semigroups

    Get PDF
    We consider viscosity approximation methods with demi-continuous strong pseudo-contractions for a non-expansive semigroup. Strong convergence theorems of the purposed iterative process are established in the framework of Hilbert spaces

    Strong Convergence of Monotone Hybrid Algorithm for Hemi-Relatively Nonexpansive Mappings

    Full text link
    The purpose of this article is to prove strong convergence theorems for fixed points of closed hemi-relatively nonexpansive mappings. In order to get these convergence theorems, the monotone hybrid iteration method is presented and is used to approximate those fixed points. Note that the hybrid iteration method presented by S. Matsushita and W. Takahashi can be used for relatively nonexpansive mapping, but it cannot be used for hemi-relatively nonexpansive mapping. The results of this paper modify and improve the results of S. Matsushita and W. Takahashi (2005), and some others

    Wiener-Hopf Equations Technique for General Variational Inequalities Involving Relaxed Monotone Mappings and Nonexpansive Mappings

    Full text link
    We show that the general variational inequalities are equivalent to the general Wiener-Hopf equations and use this alterative equivalence to suggest and analyze a new iterative method for finding the common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the general variational inequality involving multivalued relaxed monotone operators. Our results improve and extend recent ones announced by many others

    Enhanced effect of microdystrophin gene transfection by HSV-VP22 mediated intercellular protein transport

    Get PDF
    Background: Duchenne musclar dystrophy (DMD) is an X-linked recessive disease caused by mutations of dystrophin gene, there is no effective treatment for this disorder at present. Plasmidmediated gene therapy is a promising therapeutical approach for the treatment of DMD. One of the major issues with plasmid-mediated gene therapy for DMD is poor transfection efficiency and distribution. The herpes simplex virus protein VP22 has the capacity to spread from a primary transduced cell to surrounding cells and improve the outcome of gene transfer. To improve the efficiency of plasmid-mediated gene therapy and investigate the utility of the intercellular trafficking properties of VP22-linked protein for the treatment for DMD, expression vectors for C-terminal versions of VP22-microdystrophin fusion protein was constructed and the VP22-mediated shuttle effect was evaluated both in vitro and in vivo. Results: Our results clearly demonstrate that the VP22-microdystrophin fusion protein could transport into C2C12 cells from 3T3 cells, moreover, the VP22-microdystrophin fusion protein enhanced greatly the amount of microdystrophin that accumulated following microdystrophin gene transfer in both transfected 3T3 cells and in the muscles of dystrophin-deficient (mdx) mice. Conclusion: These results highlight the efficiency of the VP22-mediated intercellular protein delivery for potential therapy of DMD and suggested that protein transduction may be a potential and versatile tool to enhance the effects of gene delivery for somatic gene therapy of DMD.National Natural Science Foundation of China (30370510, 30170337); CMB Fund (4209347); the Key Project of the State Ministry of Public Health (2001321); and National Nature Science Foundation of China (30400322)
    • …
    corecore