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Abstract
In this paper, we investigate the problem of finding some common element in the set
of common fixed points of an infinite family of nonexpansive mappings and in the set
of solutions of variational inequalities based on an extragradient-like iterative
algorithm. Strong convergence of the purposed iterative algorithm is obtained.
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1 Introduction
Iterative algorithms have been playing an important role in the approximation solvability,
especially of nonlinear variational inequalities as well as of nonlinear equations in several
fields such asmechanics, traffic, economics, information, medicine, andmany others. The
well-known convex feasibility problem which captures applications in various disciplines
such as image restoration and radiation therapy treatment planning is to find a point in
the intersection of common fixed point sets of a family of nonlinear mappings; see, for
example, [–]. The Mann iterative algorithm is an efficient method to study the class of
nonexpansive mappings. Indeed, Picard cannot converge even that the fixed point set of
nonexpansive mappings is nonempty.
It is known that Mann iterative algorithm only has weak convergence for nonexpansive

mappings in infinite-dimensional Hilbert spaces; see [] for more details and the refer-
ences therein. In many disciplines, including economics [], image recovery [], quan-
tum physics [–], and control theory [], problems arise in infinite dimension spaces.
To improve the weak convergence of the Mann iterative algorithm, many authors consid-
ered using contractions to approximate nonexpansive mappings; for more details, see []
and [] and the references therein.
In this paper, we focus on the problem of finding some common element in the set of

common fixed points of an infinite family of nonexpansive mappings and in the set of so-
lutions of variational inequalities based on an extragradient-like iterative algorithm. Some
deduced sub-results and applications are obtained.
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2 Preliminaries
Throughout this paper, we assume thatH is a real Hilbert space whose inner product and
norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let K be a nonempty, closed, and convex
subset of H . Let PK be the metric projection from H onto K .
Recall that a mapping B : K →H is said to be inverse-strongly monotone iff there exists

a positive real number μ such that

〈Bx – By,x – y〉 ≥ μ‖Bx – By‖, ∀x, y ∈ K .

For such a case, B is also said to be μ-inverse-strongly monotone.
Recall that a mapping T : K → K is said to be nonexpansive iff

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ K .

In this paper, we use F(T) to denote the fixed point set of the mapping T .
Recall that a mapping f : K → K is said to be a contraction iff there exists a coefficient

α ∈ (, ) such that

∥∥f (x) – f (y)
∥∥ ≤ α‖x – y‖, ∀x, y ∈ K .

For such a case, f is also said to be an α-contraction.
Recall that a linear bounded operator A : K → K is strongly positive iff there exists a

constant γ̄ >  such that

〈Ax,x〉 ≥ γ̄ ‖x‖, ∀x ∈ K .

Recall that a set-valued mapping S :H → H is said to be monotone iff f ∈ Sx and g ∈ Sy
imply

〈x – y, f – g〉 ≥ , ∀x, y ∈H .

A monotone mapping S : H → H is maximal iff the graph of G(S) of S is not properly
contained in the graph of any other monotone mapping. It is known that a monotone
mapping S is maximal iff for (x, f ) ∈H ×H , 〈x– y, f – g〉 ≥  for every (y, g) ∈G(S) implies
f ∈ Sx. LetQ : C →H be a monotone mapping andNKv be the normal cone to K at v ∈ K ,
i.e., NKv = {w ∈H : 〈v – u,w〉 ≥ , ∀u ∈ K}, and define

Sv =

⎧⎨
⎩Qv +NKv, v ∈ K ,

∅, v /∈ K .

Then S is maximal monotone and  ∈ Sv iff v ∈ VI(K ,A); see [] for more details.
Recall that the classical variational inequality is to find a u ∈ K such that

〈Bu, v – u〉 ≥ , ∀v ∈ K , (.)

where B : K → H is a monotone mapping. It is known that u ∈ K is a solution to (.)
iff u is a fixed point of the mapping PK (I – λB), where λ >  is a constant and I stands
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for the identity mapping. In this paper, we use VI(K ,B) to denote the solution set of the
variational inequality (.).
Iterative algorithms for nonexpansivemappings have recently been applied to solve con-

vex minimization problems. A typical problem is to minimize a quadratic function over
the set of fixed points of a nonexpansive mapping T on a real Hilbert space H ,

min
x∈F(T)



〈Ax,x〉 – 〈x,u〉, (.)

where A is a linear bounded self-adjoint operator onH and u is a given point inH . In [],
it is proved that the sequence {xn} defined by the iterative algorithm

x ∈ H , xn+ = (I – αnA)Txn + αnu, n≥ ,

strongly converges to the unique solution of theminimization problem (.) provided that
the sequence {αn} satisfies certain restriction.
Recently, Marino and Xu [] reconsidered the problem by viscosity approximation

method. They investigated the following iterative algorithm:

x ∈ H , xn+ = (I – αnA)Txn + αnγ f (xn), n≥ ,

where A is a linear bounded self-adjoint operator on H , T : H → H is a nonexpansive
mapping, and f : H → H is a contraction. They proved that the sequence {xn} generated
in the above iterative process converges strongly to the unique solution of the following
variational inequality:

〈
(A – γ f )x∗,x – x∗〉 ≥ , x ∈ K ,

which is the optimality condition for the minimization problem

min
x∈F(T)



〈Ax,x〉 – h(x),

where h is a potential function for γ f , that is, h′(x) = γ f (x) for x ∈ H .
Recently, the problem of finding a common element in the fixed point set of a nonex-

pansive mapping and in the solution set of a variational inequality has been considered by
many authors; see, for example, [–] and the references therein. In , Takahashi
and Toyoda [] considered the following iterative algorithm:

x ∈ K , xn+ = αnxn + ( – αn)TPK (xn – λnBxn), n≥ , (.)

where T : K → K is a nonexpansive mapping, B : K → H is a μ-inverse-strongly mono-
tone mapping, {αn} is a sequence in (, ), and {λn} is a sequence in (, μ). They showed
that the sequence {xn} generated in (.) weakly converges to some point z ∈ F(T) ∩
VI(K ,B).
Iiduka and Takahashi [] reconsidered the common element problem via the following

iterative algorithm:

x = x ∈ K , xn+ = αnx + ( – αn)TPK (xn – λnBxn), n ≥ , (.)
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where T : K → K is a nonexpansive mapping, B : K → H is a μ-inverse-strongly mono-
tone mapping, {αn} is a sequence in (, ), and {λn} is a sequence in (, μ). They proved
that the sequence {xn} strongly converges to some point z ∈ F(T)∩VI(K ,B).
In this paper, we will consider an infinite family of nonexpansive mappings. More pre-

cisely, we consider the mappingWn defined by

Un,n+ = I,

Un,n = γnTnUn,n+ + ( – γn)I,

Un,n– = γn–Tn–Un,n + ( – γn–)I,

...

Un,k = γkTkUn,k+ + ( – γk)I, (.)

Un,k– = γk–Tk–Un,k + ( – γk–)I,

...

Un, = γTUn, + ( – γ)I,

Wn =Un, = γTUn, + ( – γ)I,

where γ,γ, . . . are real numbers such that  ≤ γn ≤ , T,T, . . . is an infinite family of
mappings of K into itself. Nonexpansivity of each Ti ensures the nonexpansivity ofWn.
Regarding Wn, we have the following lemmas which are important to prove our main

results.

Lemma. [] Let K be a nonempty, closed, and convex subset of a strictly convex Banach
space E. Let T,T, . . . be nonexpansive mappings of K into itself such that

⋂∞
n= F(Tn) is

nonempty, and let γ,γ, . . . be real numbers such that  < γn ≤ b <  for any n ≥ . Then,
for every x ∈ K and k ∈N , the limit limn→∞ Un,kx exists.

Using Lemma ., one can define the mappingW as follows:

Wx = lim
n→∞Wnx = lim

n→∞Un,x, ∀x ∈ K . (.)

Such a mappingW is calledW -mapping generated by T,T, . . . and γ,γ, . . . .
Throughout this paper, we will assume that  < γn ≤ b <  for each n≥ .

Lemma. [] Let K be a nonempty, closed, and convex subset of a strictly convex Banach
space E. Let T,T, . . . be nonexpansive mappings of K into itself such that

⋂∞
n= F(Tn) is

nonempty, and let γ,γ, . . . be real numbers such that  < γn ≤ b <  for each n ≥ . Then
F(W ) =

⋂∞
n= F(Tn).

In this paper, motivated by the above results, we investigate the problem of approximat-
ing a common element in the solution set of variational inequalities and in the common
fixed point set of a family of nonexpansive mappings based on an extragradient-like itera-
tive algorithm. Strong convergence theorems of common elements are established in the
framework of Hilbert spaces.
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In order to prove our main results, we also need the following lemmas.

Lemma . In a real Hilbert space H , the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

Lemma . [] Assume A is a strongly positive linear bounded self-adjoint operator on
a Hilbert space H with the coefficient γ̄ >  and  < ρ ≤ ‖A‖–. Then ‖I – ρA‖ ≤  – ργ̄ .

Lemma . [] Let H be a Hilbert space. Let A be a strongly positive linear bounded
self-adjoint operator with the coefficient γ̄ > . Assume that  < γ < γ̄ /α. Let T be a non-
expansive mapping with a fixed point xt ∈ H of the contraction x �→ tγ f (x) + (I – tA)Tx.
Then {xt} converges strongly as t →  to a fixed point x̄ of T , which solves the variational
inequality

〈
(A – γ f )x̄, z – x̄

〉 ≤ , ∀z ∈ F(T).

Equivalently, we have PF(T)(I –A + γ f )x̄ = x̄.

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(a)

∑∞
n= γn = ∞;

(b) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ αn = .

Lemma . [] Let K be a nonempty closed convex subset of a Hilbert space H , {Ti :
C → C} be a family of infinitely nonexpansive mappings with

⋂∞
i= F(Ti) �= ∅, {γn} be a real

sequence such that  < γn ≤ b <  for each n ≥ . If C is any bounded subset of K , then
limn→∞ supx∈C ‖Wx –Wnx‖ = .

3 Main results
Theorem. Let K be a nonempty, closed, and convex subset of a real Hilbert space H . Let
Bi : K → H be μi-inverse-strongly monotone mappings for each i = , , and f : K → K be
an α-contraction. Let A : K → K be a strongly positive linear bounded self-adjoint operator
with the coefficient γ̄ > . Let {xn} be a sequence generated in the following extragradient-
like iterative algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K ,

yn = PK (xn – ηnBxn),

xn+ = PK (αnγ f (xn) + (I – αnA)WnPK (I – λnB)yn), n≥ ,

(.)

where PK is the metric projection from H onto K , Wn is a mapping defined by (.), {αn}
is a real number sequence in (, ), and {λn}, {ηn} are two positive real number sequences.
Assume that F =

⋂∞
i= F(Ti) ∩ VI(K ,B) ∩ VI(K ,B) �= ∅,  < γ < γ̄ /α and the following

restrictions are satisfied:

http://www.fixedpointtheoryandapplications.com/content/2013/1/67
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(a) limn→∞ αn = ,
∑∞

n= αn = ∞, and
∑∞

n= |αn+ – αn| ≤ ∞;
(b)

∑∞
n= |ηn+ – ηn| < ∞,

∑∞
n= |λn+ – λn| < ∞;

(c) {ηn}, {λn} ⊂ [u, v], where  < u < v < min{μ,μ}.
Then the sequence {xn} strongly converges to x∗ ∈ F , where x∗ = PF (γ f + (I –A))x∗.

Proof First, we show that I –λnB and I – ηnB are nonexpansive. Indeed, we see from the
restriction (c) that

∥∥(I – λnB)x – (I – λnB)y
∥∥ =

∥∥x – y – λn(Bx – By)
∥∥

= ‖x – y‖ – λn〈x – y,Bx – By〉 + λ
n‖Bx – By‖

≤ ‖x – y‖ + λn(λn – μ)‖Bx – By‖

≤ ‖x – y‖, ∀x, y ∈ C.

This shows that I – λnB is nonexpansive, so is I – ηnB. Noticing the condition (a), we
may assume, with no loss of generality, that αn ≤ ‖A‖– for each n ≥ . It follows from
Lemma . that ‖I – αnA‖ ≤  – αnγ̄ .
Next, we show that the sequence {xn} is bounded. Letting p ∈ F , we see that

‖yn – p‖ = ∥∥PK (I – ηnB)xn – PK (I – ηnB)p
∥∥ ≤ ‖xn – p‖.

It follows that

‖xn+ – p‖ ≤ ∥∥αn
(
γ f (xn) –Ap

)
+ (I – αnA)

(
WnPC(I – λnB)yn – p

)∥∥
≤ αn

∥∥γ f (xn) –Ap
∥∥ + ( – αnγ̄ )

∥∥WnPC(I – λnB)yn – p
∥∥

≤ αnγ
∥∥f (xn) – f (p)

∥∥ + αn
∥∥γ f (p) –Ap

∥∥ + ( – αnγ̄ )‖yn – p‖
=

(
 – αn(γ̄ – γα)

)‖xn – p‖ + αn
∥∥γ f (p) –Ap

∥∥.
By simple induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖, ‖Ap – γ f (p)‖

γ̄ – γα

}
,

which yields that the sequence {xn} is bounded, so is {yn}. Notice that

‖yn+ – yn‖
=

∥∥PK (I – ηn+B)xn+ – PK (I – ηnB)xn
∥∥

≤ ∥∥(I – ηn+B)xn+ – (I – ηn+B)xn + (I – ηn+B)xn – (I – ηnB)xn
∥∥

≤ ‖xn+ – xn‖ + |ηn+ – ηn|‖Bxn‖. (.)

Putting ρn = PK (I – λnB)yn, we have

‖ρn+ – ρn‖
=

∥∥PK (I – λn+B)yn+ – PK (I – λnB)yn
∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/67
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≤ ∥∥(I – λn+B)yn+ – (I – λn+B)yn + (I – λn+B)yn – (I – λnB)yn
∥∥

≤ ‖yn+ – yn‖ + |λn+ – λn|‖Byn‖. (.)

Substituting (.) into (.), we arrive at

‖ρn+ – ρn‖ ≤ ‖xn+ – xn‖ +M
(|ηn+ – ηn| + |λn+ – λn|

)
, (.)

whereM is an appropriate constant such that

M ≥ max
{
sup
n≥

‖Byn‖, sup
n≥

‖Bxn‖
}
.

Notice that

‖xn+ – xn+‖
≤ ∥∥(I – αn+A)(Wn+ρn+ –Wnρn) – (αn+ – αn)AWnρn

+ γ
(
αn+

(
f (xn+) – f (xn)

)
+ f (xn)(αn+ – αn)

)∥∥
≤ ( – αn+γ̄ )

(‖ρn+ – ρn‖ + ‖Wn+ρn –Wnρn‖
)
+ |αn+ – αn|‖AWnρn‖

+ γ
(
αn+α‖xn+ – xn‖ +

∥∥f (xn)∥∥|αn+ – αn|
)
. (.)

Since Ti and Un,i are nonexpansive, we have from (.) that

‖Wn+ρn –Wnρn‖ = ‖γTUn+,ρn – γTUn,ρn‖
≤ γ‖Un+,ρn –Un,ρn‖
= γ‖γTUu+,ρn – γTUn,ρn‖
≤ γγ‖Uu+,ρn –Un,ρn‖
≤ · · ·
≤ γγ · · ·γn‖Un+,n+ρn –Un,n+ρn‖

≤ M

n∏
i=

γi, (.)

whereM ≥  is an appropriate constant such that ‖Un+,n+ρn –Un,n+ρn‖ ≤ M for each
n≥ . Substituting (.) and (.) into (.), we arrive at

‖xn+ – xn+‖ ≤ (
 – αn+(γ̄ – αγ )

)‖xn+ – xn‖

+M

( n∏
i=

γi + |αn+ – αn| + |λn+ – λn| + |ηn+ – ηn|
)
, (.)

whereM is an appropriate constant such that

M =max
{
M,M,γ sup

n≥

{∥∥f (xn)∥∥ + ‖AWnρn‖
}}

.

http://www.fixedpointtheoryandapplications.com/content/2013/1/67
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From the restrictions (a) and (b), we obtain from Lemma . that

lim
n→∞‖xn+ – xn‖ = . (.)

Notice that

‖xn+ –Wnρn‖ =
∥∥PK

(
αnγ f (xn) + (I – αnA)WnPK (I – λnB)yn

)
– PK (Wnρn)

∥∥
≤ αn

∥∥γ f (xn) –AWnρn
∥∥.

It follows from the restriction (a) that

lim
n→∞‖Wnρn – xn+‖ = . (.)

Notice that

‖yn – p‖ ≤ ∥∥(xn – p) – ηn(Bxn – Bp)
∥∥

≤ ‖xn – p‖ – ηnμ‖Bxn – Bp‖ + η
n‖Bxn – Bp‖

= ‖xn – p‖ + (
η
n – ηnμ

)‖Bxn – Bp‖. (.)

In a similar way, we find that

‖ρn – p‖ ≤ ‖xn – p‖ + (
λ
n – λμ

)‖Byn – Bp‖. (.)

On the other hand, we have

‖xn+ – p‖ ≤ ∥∥αn
(
γ f (xn) –Ap

)
+ (I – αnA)(Wnρn – p)

∥∥

≤ (
αn

∥∥γ f (xn) –Ap
∥∥ + ( – αnγ̄ )‖ρn – p‖)

≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖ρn – p‖ + αn
∥∥γ f (xn) –Ap

∥∥‖ρn – p‖. (.)

Substituting (.) into (.) gives

‖xn+ – p‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖xn – p‖ + (
λ
n – λnμ

)‖Byn – Bp‖

+ αn
∥∥γ f (xn) –Ap

∥∥‖ρn – p‖.

It follows from the restriction (c) that

u(μ – v)‖Byn – Bp‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖xn – p‖ – ‖xn+ – p‖ + αn
∥∥γ f (xn) –Ap

∥∥‖ρn – p‖
≤ αn

∥∥γ f (xn) – Bp
∥∥ +

(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖
+ αn

∥∥γ f (xn) –Ap
∥∥‖ρn – p‖.

In view of the restriction (a), we obtain from (.) that

lim
n→∞‖Byn – Bp‖ = . (.)
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From (.), we also have

‖xn+ – p‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖yn – p‖

+ αn
∥∥γ f (xn) –Ap

∥∥‖ρn – p‖. (.)

Combining (.) with (.), we arrive at

‖xn+ – p‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖xn – p‖ + (
η
n – ηnμ

)‖Bxn – Bp‖

+ αn
∥∥γ f (xn) –Ap

∥∥‖ρn – p‖,

which implies from the restriction (c) that

u(μ – v)‖Bxn – Bp‖

≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

+ αn
∥∥γ f (xn) –Ap

∥∥‖ρn – p‖
≤ αn

∥∥γ f (xn) –Ap
∥∥ +

(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖
+ αn

∥∥γ f (xn) –Ap
∥∥‖ρn – p‖.

In view of the restriction (a), we obtain from (.) that

lim
n→∞‖Bxn – Bp‖ = . (.)

On the other hand, we see from the firm expansivity of PK that

‖yn – p‖ =
∥∥PK (I – ηnB)xn – PK (I – ηnB)p

∥∥

≤ 〈
(I – ηnB)xn – (I – ηnB)p, yn – p

〉
=



(∥∥(I – ηnB)xn – (I – ηnB)p

∥∥ + ‖yn – p‖

–
∥∥(I – ηnB)xn – (I – ηnB)p – (yn – p)

∥∥)
≤ 


(‖xn – p‖ + ‖yn – p‖ – ∥∥(xn – yn) – ηn(Bxn – Bp)

∥∥)
=



(‖xn – p‖ + ‖yn – p‖ – ‖xn – yn‖ – η

n‖Bxn – Bp‖

+ ηn〈xn – yn,Bxn – Bp〉
)
,

which yields

‖yn – p‖ ≤ ‖xn – p‖ – ‖xn – yn‖ + ηn‖xn – yn‖‖Bxn – Bp‖. (.)

In the same way, we can obtain that

‖ρn – p‖ ≤ ‖xn – p‖ – ‖ρn – yn‖ + λn‖ρn – yn‖‖Byn – Bp‖. (.)
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Substituting (.) into (.) yields

‖xn+ – p‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖xn – p‖ – ‖xn – yn‖

+ ηn‖xn – yn‖‖Bxn – Bp‖ + αn
∥∥γ f (xn) –Ap

∥∥‖ρn – p‖.

It follows that

‖xn – yn‖ ≤ αn
∥∥γ f (xn) –Ap

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

+ ηn‖xn – yn‖‖Bxn – Bp‖ + αn
∥∥γ f (xn) –Ap

∥∥‖ρn – p‖
≤ αn

∥∥γ f (xn) –Ap
∥∥ +

(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖
+ ηn‖xn – yn‖‖Bxn – Bp‖ + αn

∥∥γ f (xn) –Ap
∥∥‖ρn – p‖.

In view of (.) and (.), we see from the restriction (a) that

lim
n→∞‖xn – yn‖ = . (.)

Similarly, we can obtain that

lim
n→∞‖ρn – yn‖ = . (.)

Observe that

‖ρn –Wnρn‖ ≤ ‖yn – ρn‖ + ‖xn – yn‖ + ‖xn – xn+‖ + ‖xn+ –Wnρn‖.

It follows from (.), (.), (.) and (.) that

lim
n→∞‖Wnρn – ρn‖ = . (.)

From Lemma ., we have ‖Wρn –Wnρn‖ →  as n→ ∞. This in turn implies that

lim
n→∞‖Wρn – ρn‖ = . (.)

Next, we show that

lim sup
n→∞

〈
γ f

(
x∗) –Ax∗,xn – x∗〉 ≤ . (.)

To show it, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
γ f

(
x∗) –Ax∗,xn – x∗〉 = lim

i→∞
〈
γ f

(
x∗) –Ax∗,xni – x∗〉.

As {xni} is bounded, we have that a subsequence {xnij } of {xni} converges weakly to p.
We may assume, without loss of generality, that xni ⇀ p. From (.) and (.), we also
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have yni ⇀ p and zni ⇀ p, respectively. Notice that p ∈ F . Indeed, let us first show that
p ∈ VI(K ,B). Put

Sw =

⎧⎨
⎩Bv +NKv, v ∈ K ,

∅, v /∈ K .

Then S is maximal monotone. Let (v,w) ∈G(S). Since w – Bv ∈NKv and ρn ∈ K , we have

〈v – ρn,w – Bv〉 ≥ .

On the other hand, we have from ρn = PK (I – λnB)yn that

〈
v – ρn,ρn – (I – λnB)yn

〉 ≥ 

and hence
〈
v – ρn,

ρn – yn
λn

+ Byn
〉
≥ .

It follows that

〈v – ρni ,w〉 ≥ 〈v – ρni ,Bv〉

≥ 〈v – ρni ,Bv〉 –
〈
v – ρni ,

ρni – yni
λni

+ Byni

〉

≥
〈
v – ρni ,Bv –

ρni – yni
λni

– Byni

〉

= 〈v – ρni ,Bv – Bρni〉 + 〈v – ρni ,Bρni – Byni〉 –
〈
v – ρni ,

ρni – yni
λni

〉

≥ 〈v – ρni ,Bρni – Byni〉 –
〈
v – ρni ,

ρni – yni
λni

〉
,

which implies that 〈v – p,w〉 ≥ . We have p ∈ B–
  and hence p ∈ VI(K ,B). In a similar

way, we can show p ∈ VI(K ,B). Next, let us show p ∈ ⋂∞
i= F(Ti). Since Hilbert spaces

satisfy Opial’s condition, we see from (.) that

lim inf
i→∞ ‖ρni – p‖ < lim inf

i→∞ ‖ρni –Wp‖
= lim inf

i→∞ ‖ρni –Wρni +Wρni –Wp‖
≤ lim inf

i→∞ ‖Wρni –Wp‖
≤ lim inf

i→∞ ‖ρni – p‖,

which derives a contradiction. Thus, we have p ∈ F(W ) =
⋂∞

i= F(Ti). From Lemma ., we
see that there exists a unique x∗ such that x∗ = PF (γ f + (I –A))x∗. It follows that

lim sup
n→∞

〈
γ f

(
x∗) –Ax∗,xn – x∗〉 = 〈

γ f
(
x∗) –Ax∗,p – x∗〉 ≤ .
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That is, (.) holds. It follows from Lemma . that

∥∥xn+ – x∗∥∥ ≤ ∥∥αn
(
γ f (xn) –Ax∗) + (I – αnA)

(
Wnρn – x∗)∥∥

≤ ( – αnγ̄ )
∥∥Wnρn – x∗∥∥ + αn

〈
γ f (xn) –Ax∗,xn+ – x∗〉

≤ ( – αnγ̄ )
∥∥xn – x∗∥∥ + αγαn

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)

+ αn
〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉.

It follows that

∥∥xn+ – x∗∥∥ ≤ ( – αnγ̄ ) + αnγα

 – αnγα

∥∥xn – x∗∥∥ +
αn

 – αnγα

〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉

=
( – αnγ̄ + αnαγ )

 – αnγα

∥∥xn – x∗∥∥ +
α
nγ̄



 – αnγα

∥∥xn – x∗∥∥

+
αn

 – αnγα

〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉

≤
[
 –

αn(γ̄ – αγ )
 – αnγα

]∥∥xn – x∗∥∥

+
αn(γ̄ – αγ )
 – αnγα

(


γ̄ – αγ

〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉 + αnγ̄



(γ̄ – αγ )
M

)
,

whereM is an appropriate constant such thatM ≥ supn≥ ‖xn – x∗‖. Put bn = αn(γ̄–αγ )
–αnαγ

and cn = 
γ̄–αγ

〈γ f (x∗) –Ax∗,xn+ – x∗〉 + αnγ̄ 

(γ̄–αγ )M. That is,

∥∥xn+ – x∗∥∥ ≤ ( – bn)
∥∥xn – x∗∥∥ + bncn. (.)

In view of the restrictions (a) and (b), we see from (.) that

lim
n→∞bn = ,

∞∑
n=

bn = ∞ and lim sup
n→∞

cn ≤ .

Apply Lemma . to (.) to conclude that xn → x∗ as n → ∞. This completes the
proof. �

If B = , the zero mapping, then Theorem . is reduced to the following.

Corollary . Let K be a nonempty, closed, and convex subset of a real Hilbert space H . Let
B : K →H beμ-inverse-stronglymonotonemappings and f : K → K be an α-contraction.
Let A : K → K be a strongly positive linear bounded self-adjoint operator with the coeffi-
cient γ̄ > . Assume that  < γ < γ̄ /α. Let {xn} be a sequence generated in the following
iterative algorithm:

⎧⎨
⎩x ∈ K ,

xn+ = PK (αnγ f (xn) + (I – αnA)WnPK (I – λnB)xn), n≥ ,
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where PK is the metric projection from H onto K ,Wn is a mapping defined by (.), {αn} is
a real number sequence in (, ), and {λn} is a positive real number sequence. Assume that
F =

⋂∞
i= F(Ti)∩VI(K ,B) �= ∅ and the following restrictions are satisfied:

(a) limn→∞ αn = ,
∑∞

n= αn = ∞, and
∑∞

n= |αn+ – αn| ≤ ∞;
(b)

∑∞
n= |λn+ – λn| < ∞;

(c) {λn} ⊂ [u, v], where  < u < v < μ.
Then the sequence {xn} strongly converges to x∗ ∈ F , where x∗ = PF (γ f + (I –A))x∗.

Remark . Corollary . includes the corresponding results in Iiduka and Takahashi
[] as a special case.

As an application of our main results, we consider another class of important nonlinear
operators: strict pseudocontractions.
Recall that a mapping S : K → K is said to be a κ-strict pseudocontraction if there exists

a constant κ ∈ [, ) such that

‖Sx – Sy‖ ≤ ‖x – y‖ + κ
∥∥(I – S)x – (I – S)y

∥∥, ∀x, y ∈ K .

It is easy to see that the class of κ-strict pseudocontractions strictly includes the class of
nonexpansive mappings as a special case.
Putting B = I – S, where S : K → K is a κ-strict pseudocontraction, we know that B is

–κ
 -inverse-strongly monotone; see [] and the references therein.

Corollary . LetH be a realHilbert space andK be a nonempty closed convex subset of H .
Let Si : K → K be κi-inverse-strongly monotone mappings for each i = ,  and f : K → K be
an α-contraction. Let A : K → K be a strongly positive linear bounded self-adjoint operator
with the coefficient γ̄ > . Assume that  < γ < γ̄ /α. Let {xn} be a sequence generated in the
following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K ,

yn = ( – ηn)xn + ηnSxn,

xn+ = PK (αnγ f (xn) + (I – αnA)Wn(( – λn)yn + λnSyn)), n≥ ,

where PK is the metric projection from H onto K , Wn is a mapping defined by (.), {αn}
is a real number sequence in (, ), and {λn}, {ηn} are two positive real number sequences.
Assume that F =

⋂∞
i= F(Ti)∩ F(S)∩ F(S) �= ∅ and the following restrictions are satisfied:

(a) limn→∞ αn = ,
∑∞

n= αn = ∞, and
∑∞

n= |αn+ – αn| ≤ ∞;
(b)

∑∞
n= |ηn+ – ηn| < ∞,

∑∞
n= |λn+ – λn| < ∞;

(c) {ηn}, {λn} ⊂ [u, v], where  < u < v < min{μ,μ}.
Then the sequence {xn} strongly converges to x∗ ∈ F , where x∗ = PF (γ f + (I –A))x∗.

Proof Put B = I – S and B = I – S. Then B is ( – κ)/-inverse-strongly monotone and
B is (–κ)/-inverse-stronglymonotone, respectively.Wehave F(S) = VI(K ,B), F(S) =
VI(K ,B), PK (I – λnB)yn = ( – λn)yn + λnTyn and PK (I – ηnB)xn = ( – ηn)xn + ηnTxn.
The desired conclusion can be immediately obtained from Theorem .. �
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