
Shang et al. Journal of Inequalities and Applications  (2015) 2015:34 
DOI 10.1186/s13660-015-0551-5

R E S E A R C H Open Access

Extragradient thresholding methods for
sparse solutions of co-coercive NCPs
Meijuan Shang1,2*, Shenglong Zhou3 and Naihua Xiu1

*Correspondence:
meijuanshang@163.com
1Department of Applied
Mathematics, Beijing Jiaotong
University, Beijing, 100044, P.R. China
2Department of Mathematics,
Shijiazhuang University,
Shijiazhuang, 050035, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we aim to find sparse solutions of co-coercive nonlinear
complementarity problems (NCPs). Mathematically, the underlying model is NP-hard
in general. Thus an �1 regularized projection minimization model is proposed for
relaxation and an extragradient thresholding algorithm (ETA) is then designed for this
regularized model. Furthermore, we analyze the convergence of this algorithm and
show any cluster point of the sequence generated by ETA is a solution of NCP.
Numerical results demonstrate that the ETA can effectively solve the �1 regularized
model and output very sparse solutions of co-coercive NCPs with high quality.
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1 Introduction
The nonlinear complementarity problem, denoted by the NCP(F), is to find a vector x ∈R

n

such that

x ≥ , F(x) ≥ , x�F(x) = ,

where F is a mapping from R
n into itself. The set of solutions to this problem is denoted

by SOL(F). Throughout this paper, we assume SOL(F) �= ∅.
NCPs have various important applications in economics and engineering, such as Nash

equilibrium problems, traffic equilibrium problems, contact mechanics problems, option
pricing. Extensive studies of NCPs have been done; see [–] and the references therein.
Numerical methods for solving NCPs, such as filter method, continuation method, non-
smooth Newton’s method, smoothing Newton methods, Levenberg-Marquardt method,
projection method, descent method, interior-point method have been extensively inves-
tigated in the literature. However, it seems that there is a vacant study of sparse solutions
for NCPs. In fact, in real applications, it is very necessary to investigate the sparse solution
of the NCPs. For example this is so in bimatrix games [] and portfolio selections []. For
more details, see [].

In this paper, we try to compute a sparse solution of the NCP(F), which has the smallest
number of nonzero entries. To be specific, we seek a vector x ∈R

n by solving the �-norm
minimization problem

© 2015 Shang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194706174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13660-015-0551-5
mailto:meijuanshang@163.com


Shang et al. Journal of Inequalities and Applications  (2015) 2015:34 Page 2 of 13

min ‖x‖

s.t. x ≥ , F(x) ≥ , x�F(x) = , ()

where ‖x‖ stands for the number of nonzero components of x. A solution of () is called
the sparse solution of NCP(F).

The above minimization problem () is in fact a sparse optimization [–] with equi-
librium constraints. In the view of the objection function, the problem is �-norm mini-
mization problem, which is combinatorial and generally NP-hard. From the point of view
of constraint conditions, it is in fact a mathematical program with equilibrium constraints
(MPEC) [–]. It is not easy to get solutions due to the equilibrium constraints, even for
a continuous objective function.

To overcome the difficulty for the �-norm, many researchers have suggested to relax
the � norm and, instead, to consider the � norm; see [, , –]. Motivated by this
outstanding work, we consider applying � norm minimization to find the sparse solution
of NCPs, and we obtain the following minimization problem to approximate ():

min
x∈Rn

‖x‖

s.t. x ≥ , F(x) ≥ , x�F(x) = , ()

where ‖x‖ =
∑n

i= |xi|.
To overcome the difficulty for the complementarity constraint, we make use of the C-

function Fmin(x) to construct the penalty of violating the complementarity constraints.
The C-function Fmin associated with the ‘min’ function can be given by

Fmin(x) = x – �R
n
+

(
x – F(x)

)
� x –

[
x – F(x)

]
+, ()

where F is a mapping from R
n into itself, and �R

n
+ is the Euclidean metric projector onto

the nonnegative orthant.
It is well known [] that solving NCP(F) is equivalent to solving the fixed point equation

Fmin(x) = , that is,

x ∈ SOL(F) ⇔ x =
[
x – F(x)

]
+, ()

where [·]+ is the Euclidean metric projector onto the nonnegative orthant.
Combining () and (), by introducing a new variable z ∈ R

n, we obtain the following
regularized minimization problem:

min
x,z∈Rn

fλ(x, z) := ‖x – z‖ + λ‖x‖

s.t. z =
[
x – F(x)

]
+, ()

where λ >  is a regularization parameter and ‖ · ‖ is denoted as the Euclidean norm. We
call () the � regularized projection minimization problem.

This paper is organized as follows. In Section , we approximate () by the � regu-
larization projection minimization problem (), and we show theoretically that () is a
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good approximation. In Section , we propose an extragradient thresholding algorithm
(ETA) for () and also analyze the convergence of this algorithm. Numerical results are
demonstrated in Section  to show that () is promising in providing a sparse solution of
co-coercive NCPs.

2 The �1 regularized approximation
In this section, we study the relation between the solutions of model () and those of
model ().

Theorem . For any fixed λ > , the solution set of () is nonempty and bounded. Let
{(̂xλk , ẑλk )} be a solution of (), and {λk} be any positive sequence converging to . If SOL(F) �=
∅, then {(̂xλk , ẑλk )} has at least one accumulation point, and any accumulation point x∗ of
{̂xλk } is a solution of ().

Proof For any fixed λ > , it is easy to show the coercivity of fλ(x, z) in (), namely

fλ(x, z) → +∞ as
∥
∥(x, z)

∥
∥ → ∞. ()

We also note that for any x ∈R
n and z ∈ R

n, fλ(x, z) ≥ . This together with () implies the
level set

L =
{

(x, z) ∈R
n ×R

n | fλ(x, z) ≤ fλ(x, z) and z =
[
x – F(x)

]
+

}

is nonempty and compact, where x ∈ R
n and z = [x – F(x)]+ are given points. The

solution set of () is nonempty and bounded since fλ(x, z) is continuous on L.
Now we show the second part of this theorem. Let x̂ ∈ SOL(F) and ẑ = [̂x – F (̂x)]+. From

(), we have x̂ = ẑ. Since (̂xλk , ẑλk ) is a solution of () with λ = λk , where ẑλk = [̂xλk – F (̂xλk )]+,
it follows that

max
{‖̂xλk – ẑλk ‖,λk ‖̂xλk ‖

} ≤ ‖̂xλk – ẑλk ‖ + λk ‖̂xλk ‖

≤ ‖̂x – ẑ‖ + λk ‖̂x‖

= λk ‖̂x‖. ()

From the above inequality, we derive that, for any λk > ,

‖̂xλk ‖ ≤ ‖̂x‖. ()

Hence the sequence {̂xλk } is bounded and has at least one cluster point. Note that the
sequence {̂zλk } is also bounded because ‖̂xλk – ẑλk ‖ ≤ λk ‖̂x‖ ≤ λ‖̂x‖ (λk → ).

Let x∗ and z∗ be any cluster points of {̂xλk } and {̂zλk }, respectively. Then there exists a
subsequence of {λk}, say {λkj}, such that

lim
kj→∞

x̂λkj
= x∗ and lim

kj→∞
ẑλkj

= z∗.
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We can obtain z∗ = [x∗ – F(x∗)]+ by letting kj tend to ∞ in zλkj
= [xλkj

– F(xλkj
)]+. Letting

λkj tend to  in

‖̂xλkj
– ẑλkj

‖ ≤ λkj ‖̂x‖

yields x∗ = z∗. Consequently, x∗ = [x∗ –F(x∗)]+ follows, which manifests x∗ ∈ SOL(F). From
(), namely ‖̂xλkj

‖ ≤ ‖̂x‖, kj tending to ∞, we get ‖x∗‖ ≤ ‖̂x‖. Then by the arbitrariness
of x̂ ∈ SOL(F), we know x∗ is a solution of problem (). This completes the proof. �

3 Algorithm and convergence
In this section, we suggest the extragradient thresholding algorithm (ETA) to solve � regu-
larization projection minimization problem () and give the convergence analysis of ETA.

First we state some basic operator concepts as regards monotonicity and some proper-
ties of the projection operator. Let PK (·) denote the projection operator from R

n onto K ,
a nonempty closed convex subset of Rn. From the definition of projection operator, it fol-
lows that

〈
y – PK (x), PK (x) – x

〉 ≥ , ∀y ∈ K , x ∈R
n. ()

Consequently, we have

〈
PK (x) – PK (y), x – y

〉 ≥ ∥
∥PK (x) – PK (y)

∥
∥, ∀x, y ∈R

n, ()
∥
∥PK (x) – PK (y)

∥
∥ ≤ ‖x – y‖, ∀x, y ∈ R

n, ()
∥
∥PK (x) – y

∥
∥ ≤ ‖x – y‖ –

∥
∥PK (x) – x

∥
∥, ∀y ∈ K , x ∈ R

n. ()

Lemma . [] Define a residue function

e(x,α) = x – PK
[
x – αF(x)

]
, α ≥ .

The following statements are valid.
(a) ∀α > , F(x)�e(x,α) ≥ ‖e(x,α)‖

α
;

(b) for any α > , ‖e(x,α)‖
α

is non-increasing;
(c) for any α ≥ , ‖e(x,α)‖ is non-decreasing.

In this paper, we suppose the mapping F : Rn → R
n is co-coercive on a subset K of Rn.

That is, there exists a constant c >  such that

〈
F(x) – F(y), x – y

〉 ≥ c
∥
∥F(x) – F(y)

∥
∥, ∀x, y ∈ K .

It is clear that the co-coercive mapping is monotone, namely,

〈
F(x) – F(y), x – y

〉 ≥ , ∀x, y ∈ K ,

but not necessarily strongly monotone, i.e., there is a constant c >  such that

〈
F(x) – F(y), x – y

〉 ≥ c‖x – y‖, ∀x, y ∈ K .
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Remark . Every affine monotone function which is also symmetric must be co-coercive
(on R

n). The Euclidean projector PK and I – PK are both ‘co-coercive‘ functions [, ].

Lemma . Suppose that F(·) is co-coercive on K with modulus c > . Then for any given
positive real number α, when c > α/, the operator I – αF is nonexpansive, that is, for any
x, y ∈ K ,

∥
∥(I – αF)(x) – (I – αF)(y)

∥
∥ ≤ ‖x – y‖.

Proof For any x, y ∈ K , when c > α/, using the co-coercivity of F , it follows that

∥
∥(I – αF)(x) – (I – αF)(y)

∥
∥

=
∥
∥(x – y) – α

[
F(x) – F(y)

]∥
∥

= ‖x – y‖ – α
〈
x – y, F(x) – F(y)

〉
+ α∥∥F(x) – F(y)

∥
∥

≤ ‖x – y‖ – α(c – α)
∥
∥F(x) – F(y)

∥
∥

≤ ‖x – y‖,

which shows I – αF is nonexpansive. �

For giving zk ∈ R
n
+ and λk > , we consider an unconstrained minimization subproblem:

min
x∈Rn

fλk

(
x, zk) :=

∥
∥x – zk∥∥ + λk‖x‖. ()

Evidently, the minimizer xs of the model () must satisfy the corresponding optimality
condition

xs = Sλk

(
zk), ()

where the shrinkage operator Sλ is defined by

(
Sλ(z)

)
i =

{
zi – λ

 , zi ≥ λ
 ,

,  ≤ zi < λ
 .

()

Evidently, the shrinkage operator Sλ is component-wise, i.e., (Sλ(z))i = Sλ(zi). Moreover, it
is nonexpansive; i.e., ‖Sλ(x) – Sλ(y)‖ ≤ ‖x – y‖, for any x, y ∈ R

n
+, see []. It demonstrates

that a solution x ∈R
n of the subproblem () can be analytically expressed by ().

By the solution representation, we construct the following extragradient thresholding
algorithm (ETA) to solve the � regularized projection minimization problem ().

Input: c-the co-coercive modulus of F .
Step : Choose  �= z ∈R

n
+, λ,β > , τ ,γ ,μ ∈ (, ), βγ < c, ε >  and integers

nmax > K > . Set k = .
Step : Compute

xk = Sλk

(
zk),

yk =
[
xk – αkF

(
xk)]

+,



Shang et al. Journal of Inequalities and Applications  (2015) 2015:34 Page 6 of 13

where αk = βγ mk with mk being the smallest nonnegative integer satisfying

∥
∥F

(
xk) – F

(
yk)∥∥ ≤ μ

‖xk – yk‖
αk

. ()

Step : If ‖xk – zk‖ ≤ ε or the number of iterations is greater than nmax, then return
zk , xk , yk and stop. Otherwise, compute

zk+ =
[
xk – αkF

(
yk)]

+

and update λk+ by

λk+ =

{
τλk , if k +  is a multiple of K,
λk , otherwise,

and k = k + , then go to Step .
Before analyzing the convergence of ETA, we first present a key lemma as regards co-

coercive mapping.

Lemma . Suppose that mapping F is co-coercive and SOL(F) �= ∅. If xk generated by ETA
is not a solution of NCP(F), then for any x̂ ∈ SOL(F), we have

〈
F
(
yk), xk – x̂

〉 ≥ 〈
F
(
yk), xk – yk 〉 ≥ ( – μ)

‖xk – yk‖

β
. ()

Proof For any x̂ ∈ SOL(F), we have F (̂x)�x̂ = . Since yk ∈R
n
+, it follows that 〈F (̂x), yk – x̂〉 ≥

. It is clear that the co-coercive mapping is pseudo-monotone, that is,

〈
x – y, F(y)

〉 ≥  ⇒ 〈
x – y, F(x)

〉 ≥ , ∀x, y ∈ K and x �= y.

By the definition of pseudo-monotonicity, it follows that 〈F(yk), yk – x̂〉 ≥ . Hence,

〈
F
(
yk), xk – x̂

〉
=

〈
F
(
yk), xk – yk + yk – x̂

〉

≥ 〈
F
(
yk), xk – yk 〉

=
〈
F
(
xk), xk – yk 〉 –

〈
F
(
xk) – F

(
yk), xk – yk 〉

≥ 
αk

∥
∥xk – yk∥∥ –

μ

αk

∥
∥xk – yk∥∥

≥  – μ

β

∥
∥xk – yk∥∥,

where the last inequality but one follows from Lemma . and (). �

We now begin to analyze the convergence of the proposed ETA.

Theorem . Suppose that the mapping F is co-coercive with modulus c > βγ / and
SOL(F) �= ∅. Let {(zk , xk , yk)} and {λk} be sequences generated by ETA, then

(i) the sequences {zk}, {xk}, and {yk} are all bounded;
(ii) any cluster point of the sequence {xk} is a solution of NCP(F).
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Proof (i) Let x̂ ∈ SOL(F). By the definition () of operator Sλ, we have

∥
∥xk – x̂

∥
∥ =

∥
∥Sλ

(
zk) – x̂

∥
∥ ≤ ∥

∥zk – x̂
∥
∥ +

√
nλk/ ≤ ∥

∥zk – x̂
∥
∥ +

√
nλ/. ()

In view of x̂ ∈ SOL(F), we have x̂ = [̂x – αkF (̂x)]+. Since c > βγ / > αk/, by Lemma ., we
see that I – αkF is nonexpansive. Together with the nonexpansive property of the projec-
tion operator, it follows that

∥
∥yk – x̂

∥
∥ =

∥
∥
[
xk – αkF

(
xk)]

+ – x̂
∥
∥

=
∥
∥
[
xk – αkF

(
xk)]

+ –
[
x̂ – αkF (̂x)

]
+

∥
∥

≤ ∥
∥(I – αkF)

(
xk – x̂

)∥
∥

≤ ∥
∥xk – x̂

∥
∥

≤ ∥
∥zk – x̂

∥
∥ +

√
nλk/

≤ ∥
∥zk – x̂

∥
∥ +

√
nλ/. ()

From () and (), we obtain

∥
∥zk+ – x̂

∥
∥ =

∥
∥
[
xk – αkF

(
yk)]

+ – x̂
∥
∥

≤ ∥
∥xk – αkF

(
yk) – x̂

∥
∥ –

∥
∥zk+ – xk + αkF

(
yk)∥∥

=
∥
∥xk – x̂

∥
∥ – αk

〈
F
(
yk), zk+ – x̂

〉
–

∥
∥zk+ – xk∥∥

≤ ∥
∥xk – x̂

∥
∥ – αk

〈
F
(
yk), zk+ – yk 〉 –

∥
∥zk+ – xk∥∥

=
∥
∥xk – x̂

∥
∥ –

∥
∥zk+ – yk∥∥ – ‖yk – xk‖

+ 
〈
xk – yk – αkF

(
yk), zk+ – yk 〉. ()

By yk = [xk – αkF(xk)]+ and (), it follows that


〈
xk – yk – αkF

(
yk), zk+ – yk 〉

≤ 
〈
xk – yk – αkF

(
yk), zk+ – yk 〉 + 

〈
yk – xk + αkF

(
xk), zk+ – yk 〉

= αk
〈
F
(
xk) – F

(
yk), zk+ – yk 〉

≤ α
k
∥
∥F

(
xk) – F

(
yk)∥∥ +

∥
∥zk+ – yk∥∥. ()

Replacing () into (), by () and (), we deduce

∥
∥zk+ – x̂

∥
∥

≤ ∥
∥xk – x̂

∥
∥ –

∥
∥yk – xk∥∥ + α

k
∥
∥F

(
xk) – F

(
yk)∥∥

≤ ∥
∥xk – x̂

∥
∥ –

∥
∥yk – xk∥∥ + μ∥∥xk – yk∥∥

=
∥
∥xk – x̂

∥
∥ –

(
 – μ)∥∥yk – xk∥∥

≤ ∥
∥xk – x̂

∥
∥. ()
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Hence, by definition of λk , it follows that

∥
∥zk+ – x̂

∥
∥ ≤ ∥

∥xk – x̂
∥
∥ ≤ ∥

∥zk – x̂
∥
∥ +

√
n


λk ≤ ∥

∥xk– – x̂
∥
∥ +

√
n


λk

≤ ∥
∥zk– – x̂

∥
∥ +

√
n


(λk + λk–) ≤ · · ·

≤ ∥
∥z – x̂

∥
∥ +

√
n



k∑

i=

λi

≤ ∥
∥z – x̂

∥
∥ +

√
n


λK

 – τ
:= C, ()

which shows {zk} is bounded. Together with () and (), we see that {xk} and {yk} are
both bounded.

(ii) Now we prove limk→∞ ‖xk – yk‖ = . By () and (), it follows that
(
 – μ)∥∥yk – xk∥∥ ≤ ∥

∥xk – x̂
∥
∥ –

∥
∥zk+ – x̂

∥
∥

≤ ∥
∥xk – x̂

∥
∥ –

(∥
∥xk+ – x̂

∥
∥ –

√
nλk+/

)

=
∥
∥xk – x̂

∥
∥ –

∥
∥xk+ – x̂

∥
∥ +

√
nλk+

∥
∥xk+ – x̂

∥
∥ – nλ

k+/

≤ ∥
∥xk – x̂

∥
∥ –

∥
∥xk+ – x̂

∥
∥ +

√
nλk+

∥
∥xk+ – x̂

∥
∥,

which leads to the following inequality:

(
 – μ)

∞∑

k=

∥
∥yk – xk∥∥ ≤

∞∑

k=

(∥
∥xk – x̂

∥
∥ –

∥
∥xk+ – x̂

∥
∥ +

√
nλk+

∥
∥xk+ – x̂

∥
∥
)

≤ ∥
∥x – x̂

∥
∥ +

√
n

∞∑

k=

λk+
∥
∥xk+ – x̂

∥
∥

≤ ∥
∥x – x̂

∥
∥ +

√
nC

∞∑

k=

λk+

=
∥
∥x – x̂

∥
∥ +

√
nC

λK

 – τ
< +∞,

where the third inequality holds from (), and thus we have limk→∞ ‖xk – yk‖ = .
Since {xk} is bounded, {xk} has at least one cluster point. Let x∗ be a cluster point of {xk}

and a subsequence {xkj} converge to x∗. Next we will show x∗ ∈ SOL(F).
If there is a positive low bounded αmin such that αki ≥ αmin > , from Lemma .(b)

and (c), we get

min{,α}∥∥e(x, )
∥
∥ ≤ ∥

∥e(x,α)
∥
∥ ≤ max{,α}∥∥e(x, )

∥
∥, ()

where e(x,α) = x – [x – αF(x)]+. Together with the continuity of e(x,α) for x and
limk→∞ ‖xk – yk‖ = , we have

∥
∥e

(
x∗, 

)∥
∥ = lim

ki→∞
∥
∥e

(
xki , 

)∥
∥ ≤ lim

ki→∞
‖e(xki ,αki )‖
min{,αki}

≤ lim
ki→∞

‖e(xki ,αki )‖
min{,αmin} = lim

ki→∞
‖xki – yki‖

min{,αmin} = . ()
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If limki→∞ αki = , for enough large ki, by Lemma .(b) and (), we get

∥
∥e

(
xki , 

)∥
∥ ≤ ‖e(xki , 

β
αki )‖


β
αki

<

μ

∥
∥F

(
xki

)
– F

(
yki

)∥
∥, ()

where yki = [xki – 
β
αki F(xki )]+. Taking the limit in the above inequality, we have

∥
∥e

(
x∗, 

)∥
∥ = lim

ki→∞
∥
∥e

(
xki , 

)∥
∥ ≤ lim

ki→∞

μ

∥
∥F

(
xki

)
– F

(
yki

)∥
∥ = . ()

It means x∗ = [x∗ – F(x∗)]+. Hence we get x∗ ∈ SOL(F). The proof is thus complete. �

4 Numerical experiments
In this section, we present some numerical experiments to demonstrate the effective-
ness of our ETA algorithm. All the numerical experiments were performed on a laptop
(.GHz, .GB of RAM) by utilizing MATLAB Ra.

We will stimulate three examples to implement the ETA algorithm. They will be ran
 times for difference dimensions, and thus average results will be recorded. In each
experiment, we set z = e, β = c, γ = ., μ = /c, nmax = ,.

4.1 Test for LCPs with Z-matrix [5]
The test is associated with the Z-matrix which has an important property, that is, there
is a unique sparse solution of LCPs when M is a kind of Z-matrix []. Let us consider
LCP(q, M) where

M = In –

n

ee� =

⎛

⎜
⎜
⎜
⎜
⎝

 – 
n – 

n · · · – 
n

– 
n  – 

n · · · – 
n

...
...

. . .
...

– 
n – 

n · · ·  – 
n

⎞

⎟
⎟
⎟
⎟
⎠

and q =

⎛

⎜
⎜
⎜
⎜
⎝


n – 


n
...

n

⎞

⎟
⎟
⎟
⎟
⎠

.

Here In is the identity matrix of order n and e = (, , . . . , )� ∈R
n. Such a matrix M is widely

used in statistics. It is clear that M is a positive semidefinite Z-matrix. For any scalar a ≥ ,
we know that the vector x = ae + e is a solution to LCP(q, M), since it satisfies

x ≥ , Mx + q = Me + q = , x�(Mx + q) = .

Among all the solutions, the vector x̂ = e = (, , . . . , )� is the unique sparse solution.
We choose z = e, c = , λ = ., β = c, τ = ., γ = ., μ = /c, ε = e – , nmax =

,, K = . We will take advantage of the recovery error ‖x – x̂‖ to evaluate our algo-
rithm. Apart from that, the average cpu time (in seconds), the average number of iteration
times and the residual ‖x – z‖ will also be taken into consideration on judging the perfor-
mance of the method.

As indicated in Table , the ETA algorithm behaves very robust because the average
number of times of iteration is identically equal to ; the recovered error ‖x – x̂‖ and
residual ‖x – z‖ are basically similar. In addition, the sparsity ‖x‖ of the recovered so-
lution x is in all cases s, which means the recover is successful. Most importantly, the
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Table 1 ETA’s computational results on LCPs with Z-matrices.

n Iter ‖x – x̂‖ ‖x – z‖ ‖x̂‖0 ‖x‖0 Time (sec.)

3,000 205 7.7007E–06 7.5424E-07 1 1 2.90
5,000 205 7.6995E–06 7.5424E-07 1 1 7.93
10,000 205 7.6986E–06 7.5424E-07 1 1 36.70
15,000 205 7.6983E–06 7.5424E-07 1 1 78.46
20,000 205 7.6981E–06 7.5424E-07 1 1 148.50
25,000 205 7.6980E–06 7.5424E-07 1 1 232.87

Table 2 SSG’s computational results on LCPs with Z-matrices.

n Iter ‖x – x̂‖ ‖x̂‖0 ‖x‖0 Time (sec.)

100 1,012 1.86E–05 1 1 2.46
200 972 1.70E–05 1 1 5.11
500 118 2.67E–06 1 1 3.88

1,000 118 1.58E–06 1 1 23.04
2,000 117 1.05E–06 1 1 139.15
3,000 117 8.69E–07 1 1 401.33
5,000 - - - - - - - - - -

ETA algorithm is exceptionally fast, which results in only . seconds being needed to
address the problem with dimension n = ,.

In order to illustrate the effectiveness of the ETA algorithm we proposed, we introduce
another method of tackling the LCPs. In [], the authors established an lp ( < p < ) reg-
ularized minimization model:

min
x∈Rn

f (x) :=


∥
∥
FB(x)

∥
∥ + λ‖x‖p

p ()

and designed a sequential smoothing gradient (SSG) method to solve the lp regularized
model and get a sparse solution of LCP(q, M). The results are displayed in Table .

It can be discerned in Table , where ‘- -’ denotes the method is invalid. Although the
sparsity ‖x‖ of the recovered solution is in all cases as large as  and the recovered errors
‖x – x̂‖ are pretty small, the average cpu time dramatically ascends with the matrix dimen-
sion n, which manifests that SSG method for LCPs is appropriate for the small dimensional
data set and thus SSG will not be appealing when n is relatively large. Contrasted with the
SSG method, the ETA algorithm is more outstanding in the cpu time and the size of the
solvable problems.

4.2 Test for LCPs with positive semidefinite matrices
In this subsection, we test ETA for randomly created LCPs with positive semidefinite
matrices. First, we state the way of constructing LCPs and their solutions. Let a matrix
Z ∈R

n×r (r < n) be generated with the standard normal distribution and M = ZZ�. Let the
sparse vector x̂ be produced by choosing randomly the s = . ∗ n nonzero components
whose values are also randomly generated from a standard normal distribution. After the
matrix M and the sparse vector x̂ have been generated, a vector q ∈ R

n can be constructed
such that x̂ is a solution of the LCP(q, M). Then x̂ can be regarded as a sparse solution of
the LCP(q, M). Namely,

x̂ ≥ , Mx̂ + q ≥ , x̂�(Mx̂ + q) = , and ‖x̂‖ = . ∗ n.
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Table 3 Results on randomly created LCPs with positive semidefinite matrices.

n Iter ‖x – z‖ ‖x̂‖0 ‖x‖0 Time (sec.)

2,000 350 8.0316E–11 20 20 18.36
3,000 210 9.8366E–11 30 30 12.02
4,000 142 8.5188E–11 40 40 29.97
5,000 142 9.5243E–11 50 50 22.29
7,000 144 8.4519E–11 70 70 46.67

To be more specific, if x̂i >  then choose qi = –(Mx̂)i, if x̂i =  then choose qi =
|(Mx̂)i| – (Mx̂)i. Let M and q be the input to our ETA algorithm and take z = e, c =
max(svd(M)), λ = ., β = c, τ = ., γ = ., μ = /c, ε = e – , nmax = ,,
K = max(, floor(,/n)). Then ETA will output a solution x. Similarly, the residual
‖x – x̂‖, average cpu time (in seconds), the average number of iteration times, and the
residual ‖x – z‖ will also be taken into consideration on valuating our ETA algorithm.

As manifested in Table , the ETA algorithm performs quite efficiently. Furthermore, the
sparsity ‖x‖ of recovered solution x is in all cases equal to the sparsity ‖x̂‖, which means
the recover is exact. Likewise, the ETA algorithm is exceptionally fast in this example,
which makes that only . seconds are needed to pursue the sparse solution of LCP
when the dimension n = ,.

4.3 Test for co-coercive nonlinear complementarity problem
We now consider a co-coercive nonlinear complementarity problems (NCP) with

F(x) = D(x) + Mx + q, ()

where D(x) and Mx + q are the nonlinear part and the linear part of F(x), respectively. We
form F(x) similarly as in [, ]. The matrix M = A�A + B, where A is an n × n matrix
whose entries are randomly generated in the interval (–, ), and a skew-symmetric matrix
B is generated in the same way. In D(x), the nonlinear part of F(x), the components are

Dj(x) = aj ∗ arctan(xj)

and aj is a random variable in (–, ). Then the sequent part of generating the sparse vector
x̂ and vector q ∈R

n such that

x̂ ≥ , F(x̂) ≥ , x̂�F(x̂) = , and ‖x̂‖ = . ∗ n

is similar to the procedure of Section .. Let M and q be the input to our ETA algorithm
and take z = e, c =  ∗ log(n), λ = ., β = c, τ = ., γ = ., μ = /c, ε = e – ,
nmax = ,, K = max(, floor(,/n)), and a = – rand(n, ). Then ETA will output a
solution x. Similarly, the average number of iteration times, the average residual ‖x – z‖,
the average sparsity ‖x‖ of x, and the average cpu time (in seconds) will also be taken into
consideration on valuating our ETA algorithm.

It is not difficult to see from Table  that the ETA algorithm also performs quite effi-
ciently in such nonlinear complementarity problems. The sparsity ‖x‖ of the recovered
solution x are all equal to the sparsity ‖x̂‖, that is, the recover is exact. What is also strik-
ing is that the ETA algorithm is exceptionally fast in this example as well, with only .
seconds being needed to tackle the sparse NCP when the dimension n = ,.
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Table 4 Results on co-coercive nonlinear complementarity problems.

n Iter ‖x – z‖ ‖x̂‖0 ‖x‖0 Time

1,000 450 7.5467E–07 10 10 3.28
3,000 138 9.8034E–07 30 30 7.86
5,000 94 9.4921E–07 50 50 14.85
7,000 96 8.4234E–07 70 70 30.24
10,000 98 7.5510E–07 100 100 143.99

5 Conclusions
In this paper, we concentrate on finding sparse solutions of co-coercive nonlinear com-
plementarity problems (NCPs). An � regularized projection minimization model is pro-
posed for relaxation, and an extragradient thresholding algorithm (ETA) is then designed
for this regularized model. Furthermore, we analyze the convergence of this algorithm and
show any cluster point of the sequence generated by ETA is a solution of NCP. Preliminary
numerical results indicate that the � regularized model as well as the ETA are promising
to find sparse solutions of NCPs.
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