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We consider viscosity approximation methods with demi-continuous strong pseudo-contractions
for a non-expansive semigroup. Strong convergence theorems of the purposed iterative process
are established in the framework of Hilbert spaces.

1. Introduction and Preliminaries

Throughout this paper, we assume that H is a real Hilbert space and denote by R
+ the set of

nonnegative real numbers. Let C be a nonempty closed and convex subset ofH and T : C →
C a nonlinear mapping. We use F(T) to denote the fixed point set of T .

Recall that the mapping T is said to be an α-contraction if there exists a constant α ∈
(0, 1) such that

∥
∥f(x) − f

(

y
)∥
∥ ≤ α

∥
∥x − y

∥
∥, ∀x, y ∈ C. (1.1)

T is said to be non-expansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.2)
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T is said to be strictly pseudo-contractive if there exists a constant α ∈ [0, 1) such that

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + α

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C. (1.3)

Note that the class of strict pseudo-contractions strictly includes the class of non-expansive
mappings as a special case. That is, T is non-expansive if and only if the coefficient α = 0. It is
also said to be pseudo-contractive if α = 1. That is,

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 +

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C. (1.4)

T is said to be strongly pseudo-contractive if there exists a positive constant λ ∈ (0, 1) such
that T + λI is pseudo-contractive. Clearly, the class of strict pseudo-contractions falls into the
one between classes of non-expansive mappings and pseudo-contractions. We remark also
that the class of strongly pseudo-contractive mappings is independent of the class of strict
pseudo-contractions (see, e.g., [1, 2]).

The following examples are due to Chidume and Mutangadura [3] and Zhou [4].

Example 1.1. Take C = (0,∞) and define T : C → C by

Tx =
x2

1 + x
. (1.5)

Then T is a strict pseudo-contraction but not a strong pseudo-contraction.

Example 1.2. Take C = R
1 and define T : C → C by

Tx =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1, x ∈ (−∞,−1)
√

1 − (1 + x)2, x ∈ [−1, 0)

−
√

1 − (x − 1)2, x ∈ [0, 1]

−1, x ∈ (1,∞).

(1.6)

Then, T is a strong pseudo-contraction but not a strict pseudo-contraction.

Example 1.3. Take H = R
2 and B = {x ∈ R

2 : ‖x‖ ≤ 1}, B1 = {x ∈ B : ‖x‖ ≤ 1/2}, B2 = {x ∈ B :
1/2 ≤ ‖x‖ ≤ 1}. If x ∈ (a, b) ∈ H, we define x⊥ to be (b,−a) ∈ H. Define T : B → B by

Tx =

⎧

⎪
⎨

⎪
⎩

x + x⊥, x ∈ B1,

x

‖x‖ − x + x⊥, x ∈ B2.
(1.7)

Then, T is a Lipschitz pseudo-contraction but not a strict pseudo-contraction.
It is very clear that, in a real Hilbert space H, (1.4) is equivalent to

〈

Tx − Ty, x − y
〉 ≤ ∥

∥x − y
∥
∥
2
. (1.8)
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T is strongly pseudo-contractive if and only if there exists a positive constant λ ∈ (0, 1) such
that

〈Tx − Ty, x − y〉 ≤ (1 − λ)
∥
∥x − y

∥
∥
2
. (1.9)

for all x, y ∈ C.
LetF = {T(t) : t ≥ 0} be a strongly continuous semigroups of non-expansivemappings

on a closed convex subset C of a Hilbert space H, that is,

(a) for each t ∈ R
+, T(t) is a non-expansive mapping on C;

(b) T(0)x = x for all x ∈ C;

(c) T(s + t) = T(s)T(t) for all s, t ≥ 0;

(d) for each x ∈ H, the mapping T(·)s from R
+ into C is continuous.

We denote by F the set of common fixed points of F, that is,

F := {x ∈ C : T(t)x = x, t > 0} =
⋂

t>0

F(T(t)). (1.10)

We know that F is nonempty if C is bounded (see [5]). In [6], Shioji and Takahashi proved
the following theorem:

Theorem ST. Let C be a closed convex subset of a Hilbert space H. Let {T(t) : t ≥ 0} be a strongly
continuous semigroup of non-expansive mappings on C such that

⋂

t≥0 F(T(t))/= ∅. Let {αn} and {tn}
be sequences of real numbers satisfying 0 < αn < 1, limn→∞αn = 0, tn ≥ 0 and limn→∞tn = ∞.
Fixu ∈ C and define a sequence {xn} in C by

xn = αnu + (1 − αn)
1
tn

∫ tn

0
T(s)xnds, ∀n ≥ 1. (1.11)

Then {xn} converges strongly to the element of F nearest to u.

Suzuki [9] improved the results of Shioji and Takahashi [6] and proved the following
theorem:

Theorem S. Let C be a closed convex subset of a Hilbert space H. Let {T(t) : t ≥ 0} be a strongly
continuous semigroup of non-expansive mappings on C such that

⋂

t≥0 F(T(t))/= ∅. Let αn and {tn}
be sequences of real numbers satisfying 0 < αn < 1, tn > 0 and limn→∞tn = limn→∞αn/tn = 0.
Fixu ∈ C and define a sequence {xn} in C by

xn = αnu + (1 − αn)T(tn)xn, ∀n ≥ 1. (1.12)

Then {xn} converges strongly to the element of F nearest to u.

Recently, The so-called viscosity approximation methods have been studied by many
author. They are very important because they are applied to convex optimization, linear
programming, monotone inclusions and elliptic differential equations. In [8], Moudafi
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proposed the viscosity approximation method of selecting a particular fixed point of a given
non-expansive mapping in Hilbert spaces. If H is a Hilbert space, T : C → C is a non-
expansive self-mapping on a nonempty closed convexC ofH and f : C → C is a contraction,
he proved the following result.

Theorem M. The sequence {xn} generated by the scheme

xn =
1

1 + εn
Txn +

εn
1 + εn

f(xn) (1.13)

converges strongly to the unique solution of the variational inequality:

x ∈ F(T), such that 〈(I − f
)

x, x − x〉 ≤ 0, ∀x ∈ F(T), (1.14)

where {εn} is a sequence of positive numbers tending to zero.

In this paper, motivated by Moudafi [8], Shioji and Takahashi [6], Suzuki [9] and Xu
[10], we introduce the following implicit iterative scheme:

xn = αnf(xn) + (1 − αn)T(tn)xn, ∀n ≥ 1, (1.15)

where f is a demi-continuous and strong pseudo-contraction, and prove that the sequence
{xn} generated by the above iterative process converge strongly to a common fixed point
q ∈ F. Also, we show that the point q solves the variational inequality

〈(

f − I
)

q, x − q
〉 ≤ 0, ∀x ∈ F. (1.16)

Our results mainly improve and extend the corresponding results announced by
Moudafi [8], Shioji and Takahashi [6], Suzuki [9], Xu [10] and some others.

In order to prove our main result, we need the following lemmas and definitions:
Let X,Y be linear normed spaces. T : D(T) ⊂ X → Y is said to be demi-continuous if,

for any {xn} ⊂ D(T) we have Txn ⇀ Tx0 as xn → x0, where → and ⇀ denote strong and
weak convergence, respectively.

Recall that a space X satisfies Opial’s condition [11] if, for each sequence {xn} in X
which converges weakly to point x ∈ X,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥, ∀y ∈ X

(

y /=x
)

. (1.17)

Lemma 1.4. Let C be a closed convex subset of a Hilbert space H, f : C → C be a strong pseudo-
contraction with the coefficient 0 < α < 1. Then

〈

x − y,
(

I − f
)

x − (

I − f
)

y
〉 ≥ (1 − α)

∥
∥x − y

∥
∥
2
, ∀x, y ∈ C. (1.18)

That is, I − f is strongly monotone with the coefficient 1 − α.
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Proof. From the definition of strongly pseudo-contractions, one sees that

〈x − y, fx − fy〉 ≤ α
∥
∥x − y

∥
∥
2
. (1.19)

Therefore, we have

〈x − y,
(

I − f
)

x − (

I − f
)

y〉 = 〈x − y, x − y〉 − 〈

x − y, fx − fy
〉

≥ (1 − α)
∥
∥x − y

∥
∥
2
, ∀x, y ∈ C.

(1.20)

This completes the proof.

Remark 1.5. If f is non-expansive, then

〈

x − y,
(

I − f
)

x − (

I − f
)

y
〉 ≥ 0, ∀x, y ∈ C. (1.21)

2. Main Results

First, we give a convergence theorem for a non-expansive semigroup by Moudafi’s viscosity
approximation methods with α-contractions.

Theorem 2.1. Let C be a nonempty closed and convex subset of a Hilbert spaceH. Let {T(t) : t ≥ 0}
be a strongly continuous semigroup of non-expansive mappings from C into itself such that F /= ∅. Let
f : C → C be an α-contraction. Let {αn} and {tn} be sequences of real numbers satisfying 0 < αn < 1,
tn > 0 and limn→∞tn = limn→∞αn/tn = 0. Define a sequence {xn} in the following manner:

x1 ∈ C, xn = αnf(xn) + (1 − αn)T(tn)xn, ∀n ≥ 1. (2.1)

Then {xn} converges strongly to p ∈ F which solves the following variational inequality:

〈(

I − f
)

p, p − x
〉 ≤ 0, ∀x ∈ F. (2.2)

Proof. Define a sequence {yn} in the following manner

y1 ∈ C, yn = αnf
(

p
)

+ (1 − αn)T(tn)yn, ∀n ≥ 1. (2.3)

From Theorem S, one sees that

Lim
n→∞

yn = PCf
(

p
)

= p. (2.4)

Therefore, it is sufficient to prove that

lim
n→∞

∥
∥yn − xn

∥
∥ = 0. (2.5)
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Noticing that

∥
∥xn − yn

∥
∥ =

∥
∥αn

[

f(xn) − f
(

p
)]

+ (1 − αn)
[

T(tn)xn − T(tn)yn

]∥
∥

≤ αnα
∥
∥xn − p

∥
∥ + (1 − αn)

∥
∥xn − yn

∥
∥,

(2.6)

one has

∥
∥xn − yn

∥
∥ ≤ α

∥
∥xn − p

∥
∥ ≤ α

∥
∥xn − yn

∥
∥ + α

∥
∥yn − p

∥
∥. (2.7)

It follows that

∥
∥xn − yn

∥
∥ ≤ α

1 − α

∥
∥yn − p

∥
∥. (2.8)

From (2.4), one obtains that (2.5) holds. This completes the proof.

Remark 2.2. If f(x) = u ∈ C, a fixed point, for all x ∈ C, then Theorem 2.1 is reduced to
Suzuki’s results [9]. Theorem 2.1 also can be viewed as an improvement of the corresponding
results in Shioji and Takahashi [6].

The class of pseudo-contractions is one of the most important classes of mappings
among nonlinear mappings. Browder [1] proved the first existence result of fixed point for
demi-continuous pseudo-contractions in the framework of Hilbert space. During the past
40 years or so, mathematicians have been devoting to the studies on the existence and
convergence of fixed points of nonexpansive mappings and pseudo-contractive mappings.
See, for example, [1–26].

Assume that P is a metric projection from a Hilbert space to its nonempty closed
convex subset C and f : C → C is a α-contraction. It is easy to see that the mapping Pf
has a unique fixed point in C. That is why Theorem 2.1 can be deduced from Theorem S
easily. What happens if we relax f from α-contraction to strong pseudo-contraction? Does
Theorem 2.1 still holds if f is a strong pseudo-contraction? Since we don’t know whether the
mapping Pf , where f is a strong pseudo-contraction, has a unique fixed point or not, we can
not get the desired results from Theorem S.

Next, we give the second convergence theorem for the non-expansive semigroup by
Moudafi’s viscosity approximation methods with strong pseudo-contractions.

Theorem 2.3. Let C be a nonempty closed and convex subset of a Hilbert spaceH. Let {T(t) : t ≥ 0}
be a strongly continuous semigroup of non-expansive mappings from C into itself such that F /= ∅.
Let f : C → C be bounded, demi-continuous and strong pseudo-contraction with the coefficient
α ∈ (0, 1). Let {αn} and {tn} be sequences of real numbers satisfying 0 < αn < 1, tn > 0 and
lim n→∞tn = lim n→∞αn/tn = 0. Define a sequence {zn} by the following manner:

z1 ∈ C, zn = αnf(zn) + (1 − αn)T(tn)zn, ∀n ≥ 1. (2.9)

Then {zn} converges strongly to q ∈ F which solves the following variational inequality:

〈(I − f
)

q, q − z〉 ≤ 0, ∀z ∈ F. (2.10)
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Proof. First, we show that the fixed point equation (2.10) is well-defined. For any n ≥ 1, define
a mapping Tn as follows

Tnz = αnf(z) + (1 − αn)T(tn)z. (2.11)

For any x, y ∈ C, one has

〈Tnx − Tny, x − y〉 = αn〈f(x) − f
(

y
)

, x − y〉 + (1 − αn)〈T(tn)x − T(tn)y, x − y〉

≤ αnα
∥
∥x − y

∥
∥
2 + (1 − αn)

∥
∥x − y

∥
∥
2 = [1 − αn(1 − α)]

∥
∥x − y

∥
∥
2
.

(2.12)

This shows Tn is demi-continuous and strong pseudo-contraction with the efficient 1−αn(1−
α). From Lan and Wu [17, Theorem 2.2], one sees that Tn has a unique fixed point, denoted
zn, which uniquely solves the fixed point equation

zn = αnf(zn) + (1 − αn)T(tn)zn. (2.13)

This is, (2.9) is well-defined. The uniqueness of the solution of the variational inequality
(2.10) is a consequence of the strongmonotonicity of I−f . Suppose p, q ∈ F both are solutions
to (2.10). It follows that

〈(

I − f
)

p, p − q
〉 ≤ 0,

〈(

I − f
)

q, q − p
〉 ≤ 0.

(2.14)

Adding up (2.14), one obtains

〈(I − f
)

p − (

I − f
)

q, p − q〉 ≤ 0, ∀x ∈ F. (2.15)

Since Lemma 1.4, one sees that p = q. Next, we use q to denote the unique solution of the
variational inequality (2.10).

Next, we show that {zn} is bounded. Indeed, for any z ∈ F, we have

‖zn − z‖2 = 〈

αn

(

f(zn) − z
)

+ (1 − αn)(T(tn)zn − z), zn − z
〉

= αn〈f(zn) − f(z), zn − z〉 + αn

〈

f(z) − z, zn − z
〉

+ 〈(1 − αn)(T(tn)zn − z, zn − z〉

≤ αnα‖zn − z‖2 + αn

〈

f(z) − z, zn − z
〉

+ (1 − αn)‖zn − z‖2

(2.16)

from which it follows that

‖zn − z‖2 ≤ 1
1 − α

〈f(z) − z, zn − z〉. (2.17)
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That is,

‖zn − z‖ ≤ 1
1 − α

∥
∥f(z) − z

∥
∥. (2.18)

This implies that {zn} is bounded. Let {zni} be an arbitrary subsequence of {zn}. Then there
exists a subsequence {znij

} of {zni}which converges weakly to a point q.
Next, we show that q ∈ F. In fact, put xj = znij

, γj = αnij
and sj = tnij

for all j ≥ 1. Fix
t > 0. Noticing that

∥
∥xj − T(t)q

∥
∥ ≤

[t/sj ]−1∑

k=0

∥
∥T

(

(k + 1)sj
)

xj − T
(

ksj
)

xj

∥
∥

+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

xj − T

([

t

sj

]

sj

)

q

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

q − T(t)q

∥
∥
∥
∥
∥

≤
[

t

sj

]

∥
∥T

(

sj
)

xj − xj

∥
∥ +

∥
∥xj − q

∥
∥ +

∥
∥
∥
∥
∥
T

(

t −
[

t

sj

]

sj

)

q − q

∥
∥
∥
∥
∥

≤ γj

sj
t
∥
∥AT

(

sj
)

xj − γf
(

xj

)∥
∥ +

∥
∥xj − q

∥
∥

+max
{∥
∥T(s)q − q

∥
∥ : 0 ≤ s ≤ sj

}

, ∀j ≥ 1,

(2.19)

we have

lim inf
j→∞

∥
∥xj − T(t)q

∥
∥ ≤ lim inf

j→∞

∥
∥xj − q

∥
∥. (2.20)

FromOpial’s condition, we have T(t)q = q. Therefore, q ∈ F. In the inequality (2.17), replacing
p with x, we have

∥
∥xj − q

∥
∥
2 ≤ 1

1 − α
〈f(q) − q, xj − q〉. (2.21)

Taking the limit as j → ∞ in (2.21), we obtain

lim
j→∞

∥
∥xj − q

∥
∥ = 0. (2.22)

Since the subsequence {zni} is arbitrary, it follows that {zn} converges strongly to q.
Finally, we prove that q ∈ F is a solution of the variational inequality (2.10). From

(2.9), one sees

(

I − f
)

zn = − 1
αn

(1 − αn)[zn − T(tn)zn]. (2.23)
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For any z ∈ F, it follows from (1.21) that

〈(I − f
)

zn, zn − z〉 = − 1
αn

〈(1 − αn)[zn − T(tn)zn], zn − z〉

= − 1
αn

〈[I − T(tn)]zn − [I − T(tn)]z, zn − z〉

+ 〈[I − T(tn)]zn, zn − z〉
≤ 〈[I − T(tn)]zn, zn − z〉
=
〈

αnf(zn) − αnT(tn)zn, zn − z
〉

= αn

〈

f(zn) − T(tn)zn, zn − z
〉

.

(2.24)

Letting n → ∞, one sees

〈(

I − f
)

q, q − z
〉 ≤ 0, ∀z ∈ F. (2.25)

That is, q ∈ F is the unique solution to the variational inequality (2.10). This completes the
proof.

Remark 2.4. From Theorem 2.3, we see that the composite mapping PCf has a unique fixed
point in C.
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