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Abstract
In this paper, we study the sparsest solutions of linear complementarity problems
(LCPs), which study has many applications, such as bimatrix games and portfolio
selections. Mathematically, the underlying model is NP-hard in general. By
transforming the complementarity constraints into a fixed point equation with
projection type, we propose an l1 regularization projection minimization model for
relaxation. Through developing a thresholding representation of solutions for a key
subproblem of this regularization model, we design a shrinkage-thresholding
projection (STP) algorithm to solve this model and also analyze convergence of STP
algorithm. Numerical results demonstrate that the STP method can efficiently solve
this regularized model and get a sparsest solution of LCP with high quality.
MSC: 90C33; 90C26; 90C90
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1 Introduction
Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the linear complementarity problem, de-
noted by LCP(q,M), is to find a vector x ∈ Rn such that

x ≥ , Mx + q ≥ , xT (Mx + q) = .

The set of solutions to this problem is denoted by SOL(q,M). Throughout the paper, we
always suppose SOL(q,M) �= ∅.
Many real-world phenomena in engineering, physics, mechanics, and economics are

governed by linear complementarity problems. Extensive studies of LCP have been done,
see the books [–] and the references therein. Numerical methods for solving LCPs, such
as the Newton method, the interior point method, and the nonsmooth equation method,
have been extensively investigated in the literature. However, it seems that there is no
study of the sparsest solutions for LCPs. In fact, in real applications, it is very necessary to
investigate the sparsest solution of the LCPs. For example this is so in bimatrix games []
and portfolio selections []. For more details, see [].
In this paper, we try to find the sparsest solution of the LCP, which has the smallest

number of nonzero entries. To be specific, we seek a vector x ∈ Rn by solving the l-norm
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minimization problem,

min‖x‖
s.t. x≥ , Mx + q ≥ , xT (Mx + q) = , ()

where ‖x‖ stands for the number of nonzero components of x. A solution of () is called
the sparsest solution of the LCP.
The above minimization problem () is in fact a sparse optimization with equilibrium

constraints. From the point of view of constraint conditions, it is not easy to get solutions
due to the equilibrium constraints, as well as the discontinuous objective function.
To overcome the difficulty, we make use of the Fmin(x) C-functions to construct the

penalty of violating the equilibrium constraints. Recall that a function ψ : R → R is called
a C-function, where C stands for complementarity, if for any pair (a,b) ∈ R,

ψ(a,b) =  ⇔ a ≥ ,b≥ ,ab = .

Define Fψ (x) : Rn → Rn by

Fψ (x) =

⎛
⎜⎜⎝

ψ(x,F(x))
...

ψ(xn,Fn(x))

⎞
⎟⎟⎠ .

The C-function Fmin, the extension of the ‘min’ function, is defined as follows:

Fmin(x) = x –�Rn+
(
x – F(x)

)
:= x –

[
x – F(x)

]
+, ()

where F(x) = Mx + q, with the vector q ∈ Rn and the matrix M ∈ Rn×n, and �Rn+ is the
‘Euclidean projector’ onto the nonnegative orthant. It is clear that

x solves the LCP(q,M) ⇔ Fmin(x) = . ()

Combining () and (), we can obtain the equivalence between LCP(q,M) and the fixed
point equation Fmin(x) = , that is,

x solves the LCP(q,M) ⇔ x =
[
x – F(x)

]
+. ()

In the view of the objective function, problem () is an l-norm minimization problem,
which is combination and generally NP-hard. The complexity of this model is generally
proportional with the number of variables. In order to overcome such a difficultly, many
researchers have suggested to relax the l norm and instead consider the l norm; see [–
]. Hence, in this paper we consider applying the l norm to find the sparsest solution of
LCPs, and we obtain the following minimization problem to approximate ():

min
x∈Rn

‖x‖

s.t. x =
[
x – F(x)

]
+, ()

where F(x) =Mx + q, ‖x‖ =∑n
i= |xi|.

http://www.journalofinequalitiesandapplications.com/content/2014/1/51


Shang and Nie Journal of Inequalities and Applications 2014, 2014:51 Page 3 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/51

By further employing the l regularization term for seeking sparsity, we introduce a new
variable, z ∈ Rn, in order to simplify the objective function and carry on an alternative
iteration. We apply the following l regularization projection minimization problem to
approximate ():

min
x,z∈Rn

fλ(x, z) := ‖x – z‖ + λ‖x‖

s.t. z =
[
x – F(x)

]
+, ()

where λ ∈ (,∞) is a given regularization parameter and ‖ ·‖ refers to the Euclidean norm.
We call () the l regularization projection minimization problem.
This paper is organized as follows. In Section , we approximate () by the l regular-

ization projection minimization problem (), and show theoretically that () is a good ap-
proximation. In Section , we develop a shrinkage-thresholding representation theory for
the subproblem of () and propose a shrinkage-thresholding projection (STP) algorithm
for (). The convergency of the STP algorithm is proved. Numerical results are demon-
strated in Section  to show that () is promising to provide a sparsest solution of LCP.

2 The l1 regularized approximation
In this section, we study the relation between the l regularization projection model ()
and the original model (), which indicates that the regularized model is a good approxi-
mation.

Theorem . For any fixed λ > , the solution set of () is nonempty and bounded. Let
{(xλk , zλk )} be a solution sequence of (), and {λk} be any positive sequence converging to .
If SOL(q,M) �= ∅, then {xλk } has at least one accumulation point, and any accumulation
point x∗ of {xλk } is a solution of ().

Proof For any fixed λ > , it is easy to show the coercivity of the objective function fλ(x, z)
in (), which refers to the property that

fλ(x, z)→ +∞ as ‖x‖ → ∞ and ‖z‖ → ∞. ()

Also notice for all x ∈ Rn and z ∈ Rn, fλ(x, z) ≥ . This, together with (), implies that the
level set

L =
{
(x, z) | fλ(x, z) ≤ fλ(x, z) and z =

[
x – F(x)

]
+

}
is nonempty and compact, where x ∈ Rn and z = [x – F(x)]+ are given points. The
solution set of () is nonempty and bounded since fλ(x, z) is continuous on L.
Now we show the second part of this theorem. Let x̂ ∈ SOL(q,M) and ẑ = [x̂ – F(x̂)]+.

From (), we have x̂ = ẑ. Note that (xλk , zλk ) is a solution of () with λ = λk , and zλk =
[xλk – F(xλk )]+. We have

max
{‖xλk – zλk‖,λk‖xλk‖

} ≤ ‖xλk – zλk‖ + λk‖xλk‖
≤ ‖x̂ – ẑ‖ + λk‖x̂‖
= λk‖x̂‖. ()
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Employing (), we easily find that for any λk > ,

‖xλk‖ ≤ ‖x̂‖. ()

Hence the whole sequence {xλk } is bounded, and it has at least one accumulation point.
One easily notices that the sequence {zλk } is the same case as {xλk }, which refers to the
inequality ‖xλk – zλk‖ ≤ λk‖x̂‖. Let x∗, z∗ be arbitrary accumulation points of {xλk } and
{zλk }, respectively, and zλk = [xλk – F(xλk )]+. Then there exists a subsequence of {λk}, say
{λkj}, such that

lim
kj→∞

xλkj
= x∗ and lim

kj→∞
zλkj

= z∗.

We obtain z∗ = [x∗–F(x∗)]+ by letting kj tend to∞ in zλkj
= [xλkj

–F(xλkj
)]+. Taking λkj → 

to both sides of the inequality

‖xλkj
– zλkj

‖ ≤ λkj‖x̂‖,

we get x∗ = z∗, which implies x∗ = [x∗ – F(x∗)]+, that is, x∗ ∈ SOL(q,M). From ‖xλkj
‖ ≤

‖x̂‖ with kj tending to∞, we get ‖x∗‖ ≤ ‖x̂‖. Then by the arbitrariness of x̂ ∈ SOL(q,M),
we know x∗ is a solution of problem (). This completes the proof. �

3 Solution representation, algorithm, and convergence
Fixing zk ∈ Rn

+, we consider an unconstrained minimization subproblem:

min
x∈Rn

fλ
(
x, zk

)
:=

∥∥x – zk
∥∥ + λ‖x‖. ()

For fixed λ, a minimizer x∗ for the convex function () must satisfy the corresponding
optimality conditions

x∗ = Sλ

(
zk

)
, ()

where the shrinkage-thresholding operator Sλ is defined by

(
Sλ

(
zk

))
i =

⎧⎨
⎩zki –

λ
 , zki ≥ λ

 ,

, ≤ zki <
λ
 .

()

It demonstrates that a solution x∗ ∈ Rn of the subproblem () can be analytically ex-
pressed by ().
By the solution representation, we construct the following shrinkage-thresholding pro-

jection (STP) algorithm to solve the l regularization projectionminimization problem ().
Now we will show that the STP algorithm is well defined, that is, () is implementable.

Before doing this, we need the following lemmas.

Lemma . [] Let P� be a metric projection operator onto a nonempty closed convex set
� ∈ Rn. Given x ∈ Rn and d ∈ Rn, define

H(α) = P�[x – αd], α ≥ ,

then ‖H(α) – x‖ is nondecreasing with respect to α.

http://www.journalofinequalitiesandapplications.com/content/2014/1/51
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STP Algorithm
Input:M ∈ Rn×n, q ∈ Rn, F(x) :=Mx + q.
Step : Initialization: Choose x, z ∈ Rn

+, λ > , β > , τ ∈ (, ), γ ∈ (, ), ε > , a
positive integer K , set k = .
Step : Updating xk+1: use xk+ = Sλk (z

k).
Step : Updating zk+1: use zk+ = [xk+ –αk+F(xk+)]+, where αk+ = βγmk+ andmk+ is
the smallest nonnegative integer satisfying the following inequality:

∥∥xk+ – [
xk+ – αk+F

(
xk+

)]
+

∥∥ + αk+
(∥∥xk+ – xk

∥∥ +
∥∥xk – zk

∥∥)
<

∥∥xk+ – zk
∥∥. ()

Step : Updating λk :

λk =

{
τλk if k is the integral multiple of K ,
λk otherwise.

()

Step : If xk+ = zk+, stop. Otherwise, set k := k +  and return to Step .

Lemma . The step size αk+ in ()must exist.

Proof From Lemma ., we see that ‖xk+ – [xk+ – αF(xk+)]+‖ is nondecreasing with re-
spect to α. It is obvious that α(‖xk+ – xk‖ + ‖xk – zk‖) is strictly increasing with respect
to α since ‖xk+ – xk‖ + ‖xk – zk‖ >  before the iterations stop. It follows that the term

g(α) :=
∥∥xk+ – [

xk+ – αF
(
xk+

)]
+

∥∥ + α
(∥∥xk+ – xk

∥∥ +
∥∥xk – zk

∥∥) ()

is strictly increasing with respect to α before the iterations stop. Thus g(βγm) is strictly
decreasing with respect to the nonnegative integerm before the iterations stop. Note that
xk+ = Sλk (z

k) ∈ Rn
+ and [xk+]+ = xk+, then we have

g() =
∥∥xk+ – [

xk+
]
+

∥∥ = .

One notes that Sλ(zk) < zk for λ >  and any zk > . It follows that ‖xk+ – zk‖ >  before
the iterations stop. If g(βγ ) < ‖xk+ – zk‖, then

αk+ = β

is just what we seek; if g(βγ ) ≥ ‖xk+ – zk‖, there is a positive integer m such that

g
(
βγm–) ≥ ∥∥xk+ – zk

∥∥ and g
(
βγm)

<
∥∥xk+ – zk

∥∥,

then

αk+ = βγm

is just what we seek. All in all, the step size αk+ in () must exist. �
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We now begin to analyze the convergence of the proposed STP algorithm.

Theorem . Let {(xk , zk)} be a sequence generated by STP algorithm, then
(i) {fλk (xk , zk)} is monotonically decreasing and converges to a constant C∗;
(ii) {xk} and {zk} are bounded and suppose infk αk = α > , then {xk} and {zk} are both

asymptotically regular, i.e.,

lim
k→∞

∥∥xk+ – xk
∥∥ =  and lim

k→∞
∥∥zk+ – zk

∥∥ = .

Moreover, any accumulation point of {xk} is a solution of LCP(q,M).

Proof (i) From () and (), we have

xk+ = argmin
x∈Rn

fλk
(
x, zk

)
.

It follows that

fλk
(
xk+, zk

) ≤ fλk
(
xk , zk

)
. ()

Since λk is monotonically decreasing, together with the inequality (), we get

fλk+
(
xk+, zk+

)
– fλk

(
xk+, zk

)
=

∥∥xk+ – zk+
∥∥ –

∥∥xk+ – zk
∥∥ + (λk+ – λk)

∥∥xk+∥∥

≤ ∥∥xk+ – [
xk+ – αk+F

(
xk+

)]
+

∥∥ –
∥∥xk+ – zk

∥∥

< –αk+
(∥∥xk+ – xk

∥∥ +
∥∥xk – zk

∥∥).
Hence,

fλk+
(
xk+, zk+

)
< fλk

(
xk+, zk

)
– αk+

(∥∥xk+ – xk
∥∥ +

∥∥xk – zk
∥∥). ()

Combining () with (), we get

fλk+
(
xk+, zk+

)
< fλk

(
xk , zk

)
– αk+

(∥∥xk+ – xk
∥∥ +

∥∥xk – zk
∥∥)

≤ fλk
(
xk , zk

)
, ()

which shows that {fλk (xk , zk)} is monotonically decreasing. Since {fλk (xk , zk)} is bounded
from below, {fλk (xk , zk)} converges to a constant C∗. This verifies (i) of Theorem ..
(ii) From the fact that (xk , zk ,λk) ∈ {(x, z,λ) ∈ Rn × Rn

+ × R+ : f (x, z,λ) ≤ f (x, z,λ)},
which is bounded, we see that {xk} and {zk} are both bounded.
From () and infk αk = α > , we have

fλk
(
xk , zk

)
– fλk+

(
xk+, zk+

)
> αk+

(∥∥xk+ – xk
∥∥ +

∥∥xk – zk
∥∥)

≥ α
(∥∥xk+ – xk

∥∥ +
∥∥xk – zk

∥∥).
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This then implies

N∑
k=

(∥∥xk+ – xk
∥∥ +

∥∥xk – zk
∥∥) <


α

N∑
k=

[
fλk

(
xk , zk

)
– fλk+

(
xk+, zk+

)]

=

α

[
fλ

(
x, z

)
– fλN+

(
xN+, zN+)]

≤ 
α
fλ

(
x, z

)
.

Thus
∑∞

k=(‖xk+ – xk‖ + ‖xk – zk‖) is convergent, which yields

∥∥xk+ – xk
∥∥ →  and

∥∥xk – zk
∥∥ →  as k → +∞. ()

The above two limitations and the inequality

∥∥zk+ – zk
∥∥ ≤ ∥∥zk+ – xk+

∥∥ +
∥∥xk+ – xk

∥∥ +
∥∥xk – zk

∥∥
yield

∥∥zk+ – zk
∥∥ →  as k → +∞.

Since {xk} is bounded, {xk} has at least one accumulation. Let x∗ be an accumulation point
of {xk} and a subsequence {xkj} converging to x∗. Since {αkj} ⊂ [α,β], without loss of gen-
erality, we suppose αkj → ᾱ ∈ [α,β] as kj → ∞. It follows that

zkj =
[
xkj – αkjF

(
xkj

)]
+ → z∗ :=

[
x∗ – ᾱF

(
x∗)]

+ as kj → ∞. ()

Combining () with (), we get x∗ = z∗, which gives x∗ = [x∗ – ᾱF(x∗)]+ and this means
x∗ ∈ SOL(q,M). The proof is thus complete. �

4 Numerical experiments
In this section, we present some numerical experiments to demonstrate the effectiveness
of our STP algorithm.All the numerical experimentswere performedon aDELL computer
(. GHz,  GB of RAM), using MATLAB ..
In the STP algorithm, the maximum number of iterations is set to . We end the STP

algorithm, if ‖xk – zk‖ < .E– or if it reaches the maximum number of iterations. We set
λ = , K = , τ = /, x, and z to be zero vectors as the initial points.

Test 1: Z-matrix LCPs [5]
Let us consider LCP(q,M) where

M = In –

n
eeT =

⎛
⎜⎜⎜⎜⎝
 – 

n – 
n · · · – 

n
– 

n  – 
n · · · – 

n
...

...
. . .

...
– 

n – 
n · · ·  – 

n

⎞
⎟⎟⎟⎟⎠ and q =

⎛
⎜⎜⎜⎜⎝


n – 


n
...

n

⎞
⎟⎟⎟⎟⎠ .

Here In is the identity matrix of order n and e = (, , . . . , )T ∈ Rn.

http://www.journalofinequalitiesandapplications.com/content/2014/1/51
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Table 1 Computational results on LCPs with Z-matrices

n 100 500 1,000 3,000 5,000 7,000

Dxz 4.43E–7 1.03E–7 6.02E–8 3.19E–8 2.62E–8 2.38E–8
gap 4.47E–7 1.03E–7 6.02E–8 3.19E–8 2.62E–8 2.38E–8
Spar 1 1 1 1 1 1
time 6.58E–3 3.28E–2 4.12E–1 3.93E+0 1.09E+1 2.14E+1

Such a matrix M is widely used in statistics. It is clear that M is a Z-matrix as well as a
positive semi-definite matrix. For any scalars a ≥ , we know that the vectors x = ae + e
are solutions to LCP(q,M), because

x ≥ , Mx + q =Me + q = , xT (Mx + q) = .

Among all the solutions, the vector x∗ = e = (, , . . . , )T is the unique sparsest solution.
We test the STP algorithm for different dimensions with n = , , ,, ,,

,, ,, respectively. In this set of experiments, we set β =  and γ = . The results
are displayed in Table .
In Table , ‘Dxz ’ denotes the Euclidean distance between xk and zk , which is in fact the

value of the merit function at xk , ‘gap’ denotes the Euclidean distance between xk and the
true sparsest solution x∗, ‘Spar’ denotes the number of the entries of xk such that xki >
.E–, and ‘time’ denotes the computational time in seconds.
From Table , we can see that the STP algorithm is effective to find the sparse solu-

tions of LCPs. The sparsity of our solution xk is the same as the sparsity of the true sparse
solution x∗. Moreover, the Dxz and the ‘gap’ decrease as the dimension of the matrix M
increases, which indicates that the larger size of the problem, the more effective the algo-
rithm is.

Test 2: Randomly created LCPs with positive semidefinite matrices
In this subsection, we test STP for randomly created LCPs with positive semidefinite ma-
trices.
First, we state the way of constructing LCPs and their solutions. Let a matrix Z ∈ Rn×r

(r < n) be generated with the standard normal distribution and letM = ZZT . Let the sparse
vector x̄ be generated with the standard normal distribution and its sparsity be as follows:
the sparsity is set to be n/ if n ≤ ,; the sparsity is set to be n/ if , < n≤ ,;
the sparsity is set to be n/ if n > ,. After the matrix M and the sparse vector x̄
have been generated, a vector q ∈ Rn can be constructed such that x̄ is a solution of the
LCP(q,M). Then x̄ can be regard as a sparse solution of the LCP(q,M). Let M and q be
input to our STP algorithm, then STP will output a solution xk . We must emphasize that
the sparsity of xk may be smaller than that of x̄ since x̄maybe not the sparsest solution of
the LCP(q,M). In this case, xk is a sparser than x̄.
In this set of experiments, ‘iter’ denotes the number of iterations for outputting xk ,

‘Spar-i’ denotes the number of the entry of x̄ satisfying x̄ki > .E–, and ‘Spar-o’ denotes
the number of the entry of xk satisfying xki > .E–. We set β = . and γ = ..
We test the STP algorithm for different dimensions with n = , , , ,, ,,

,, respectively. For each case, we randomly run  times and compute the average
values of ‘iter’, ‘Spar-i’, ‘Spar-o’ and Dxz, respectively. The results are displayed in Table .

http://www.journalofinequalitiesandapplications.com/content/2014/1/51
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Table 2 Results on randomly created LCPs with positive semidefinite matrices

n 100 300 500 1,000 5,000 8,000

iter 175 79 52 43 43 44
Spar-i 4 14 22 47 47 38
Spar-o 3 8 12 24 24 21
Dxz 9.37E–6 8.99E–6 7.63E–6 6.20E–6 5.49E–6 6.07E–6
time 2.81E–2 3.07E–2 4.35E–2 4.44E–1 1.13E+1 2.97E+1

From Table , we can see that the STP algorithm works very fast. Even for n = ,,
it only takes . seconds to yield a very sparse solution to the LCP. The values of Dxz

are all less than .E–, which indicates the output points are solutions of LCP(q,M).
Moreover, the output solution xk is sparser than x̄. When the dimension of M increases,
the accuracy does not decrease but increases and the time cost by STP increases slowly.
These phenomena show that STP is very robust. We can draw the conclusion that STP is
very efficient for finding the sparsest solution of LCPs.

Remark The continuationmethod of the regularized parameter λ plays an important role
in STP for find sparsest solutions of high quality. Moveover, a large amount of numerical
experiments indicate that STP is very robust whenever λ = , , , .

5 Conclusions
In this paper, we concentrate on finding the sparsest solutions of LCPs. We propose an l
regularized projection minimization model. Then we develop a thresholding representa-
tion theory for the subproblem of l regularized projectionminimization problem, and de-
sign a shrinkage-thresholding projection (STP) algorithm to solve the regularized model.
The convergence of the STP algorithm is proved. Preliminary numerical results indicate
that the l regularized model as well as the STP method are promising to find sparsest
solutions of LCPs.
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