14 research outputs found

    Dynamic relational event modeling:Testing, exploring, and applying

    Get PDF
    The relational event model (REM) facilitates the study of network evolution in relational event history data, i.e., time-ordered sequences of social interactions. In real-life social networks it is likely that network effects, i.e., the parameters that quantify the relative importance of drivers of these social interaction sequences, change over time. In these networks, the basic REM is not appropriate to understand what drives network evolution. This research extends the REM framework with approaches for testing and exploring time-varying network effects. First, we develop a Bayesian approach to test whether network effects change during the study period. We conduct a simulation study that illustrates that the Bayesian test accurately quantifies the evidence between a basic (‘static’) REM or a dynamic REM. Secondly, in the case of the latter, time-varying network effects can be studied by means of a moving window that slides over the relational event history. A simulation study was conducted that illustrates that the accuracy and precision of the estimates depend on the window width: narrower windows result in greater accuracy at the cost of lower precision. Third, we develop a Bayesian approach for determining window widths using the empirical network data and conduct a simulation study that illustrates that estimation with empirically determined window widths achieves both good accuracy for time intervals with important changes and good precision for time intervals with hardly any changes in the effects. Finally, in an empirical application, we illustrate how the approaches in this research can be used to test for and explore time-varying network effects of face-to-face contacts at the workplace

    Discovering trends of social interaction behavior over time:An introduction to relational event modeling: Trends of social interaction

    Get PDF
    Real-life social interactions occur in continuous time and are driven by complex mechanisms. Each interaction is not only affected by the characteristics of individuals or the environmental context but also by the history of interactions. The relational event framework provides a flexible approach to studying the mechanisms that drive how a sequence of social interactions evolves over time. This paper presents an introduction of this new statistical framework and two of its extensions for psychological researchers. The relational event framework is illustrated with an exemplary study on social interactions between freshmen students at the start of their new studies. We show how the framework can be used to study: (a) which predictors are important drivers of social interactions between freshmen students who start interacting at zero acquaintance; (b) how the effects of predictors change over time as acquaintance increases; and (c) the dynamics between the different settings in which students interact. Findings show that patterns of interaction developed early in the freshmen student network and remained relatively stable over time. Furthermore, clusters of interacting students formed quickly, and predominantly within a specific setting for interaction. Extraversion predicted rates of social interaction, and this effect was particularly pronounced on the weekends. These results illustrate how the relational event framework and its extensions can lead to new insights on social interactions and how they are affected both by the interacting individuals and the dynamic social environment

    BFpack: Flexible Bayes Factor Testing of Scientific Theories in R

    Get PDF
    There have been considerable methodological developments of Bayes factors for hypothesis testing in the social and behavioral sciences, and related fields. This development is due to the flexibility of the Bayes factor for testing multiple hypotheses simultaneously, the ability to test complex hypotheses involving equality as well as order constraints on the parameters of interest, and the interpretability of the outcome as the weight of evidence provided by the data in support of competing scientific theories. The available software tools for Bayesian hypothesis testing are still limited however. In this paper we present a new R package called BFpack that contains functions for Bayes factor hypothesis testing for the many common testing problems. The software includes novel tools for (i) Bayesian exploratory testing (e.g., zero vs positive vs negative effects), (ii) Bayesian confirmatory testing (competing hypotheses with equality and/or order constraints), (iii) common statistical analyses, such as linear regression, generalized linear models, (multivariate) analysis of (co)variance, correlation analysis, and random intercept models, (iv) using default priors, and (v) while allowing data to contain missing observations that are missing at random

    A review of applications of the Bayes factor in psychological research

    Get PDF
    The last 25 years have shown a steady increase in attention for the Bayes factor as a tool for hypothesis evaluation and model selection. The present review highlights the potential of the Bayes factor in psychological research. We discuss six types of applications: Bayesian evaluation of point null, interval, and informative hypotheses, Bayesian evidence synthesis, Bayesian variable selection and model averaging, and Bayesian evaluation of cognitive models. We elaborate what each application entails, give illustrative examples, and provide an overview of key references and software with links to other applications. The paper is concluded with a discussion of the opportunities and pitfalls of Bayes factor applications and a sketch of corresponding future research lines

    Dynamic relational event modeling: Testing, exploring, and applying

    No full text
    The relational event model (REM) facilitates the study of network evolution in relational event history data, i.e., time-ordered sequences of social interactions. In real-life social networks it is likely that network effects, i.e., the parameters that quantify the relative importance of drivers of these social interaction sequences, change over time. In these networks, the basic REM is not appropriate to understand what drives network evolution. This research extends the REM framework with approaches for testing and exploring time-varying network effects. First, we develop a Bayesian approach to test whether network effects change during the study period. We conduct a simulation study that illustrates that the Bayesian test accurately quantifies the evidence between a basic ('static') REM or a dynamic REM. Secondly, in the case of the latter, time-varying network effects can be studied by means of a moving window that slides over the relational event history. A simulation study was conducted that illustrates that the accuracy and precision of the estimates depend on the window width: narrower windows result in greater accuracy at the cost of lower precision. Third, we develop a Bayesian approach for determining window widths using the empirical network data and conduct a simulation study that illustrates that estimation with empirically determined window widths achieves both good accuracy for time intervals with important changes and good precision for time intervals with hardly any changes in the effects. Finally, in an empirical application, we illustrate how the approaches in this research can be used to test for and explore time-varying network effects of face-to-face contacts at the workplace

    Dynamic relational event modeling. Testing, exploring, and applying

    No full text
    Information on the different steps and files to reproduce the results for the paper "Dynamic relational event modeling: Testing, exploring and applying

    Separating the wheat from the chaff:Bayesian regularization in dynamic social networks

    Get PDF
    In recent years there has been an increasing interest in the use of relational event models for dynamic social network analysis. The basis of these models is the concept of an “event”, defined as a triplet of time, sender, and receiver of some social interaction. The key question that relational event models aim to answer is what drives the pattern of social interactions among actors. Researchers often consider a very large number of predictors in their studies (including exogenous effects, endogenous network effects, and interaction effects). However, employing an excessive number of effects may lead to overfitting and inflated Type-I error rates. Moreover, the fitted model can easily become overly complex and the implied social interaction behavior difficult to interpret. A potential solution to this problem is to apply Bayesian regularization using shrinkage priors to recognize which effects are truly nonzero (the “wheat”) and which effects can be considered as (largely) irrelevant (the “chaff”). In this paper, we propose Bayesian regularization methods for relational event models using four different priors for both an actor and a dyad relational event model: a flat prior model with no shrinkage, a ridge estimator with a normal prior, a Bayesian lasso with a Laplace prior, and a horseshoe prior. We apply these regularization methods in three different empirical applications. The results reveal that Bayesian regularization can be used to separate the wheat from the chaff in models with a large number of effects by yielding considerably fewer significant effects, resulting in a more parsimonious description of the social interaction behavior between actors in dynamic social networks, without sacrificing predictive performance
    corecore