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Abstract

The relational event model (REM) facilitates the study of network evolution in relational

event history data, i.e., time-ordered sequences of social interactions. In real-life social net-

works it is likely that network effects, i.e., the parameters that quantify the relative impor-

tance of drivers of these social interaction sequences, change over time. In these networks,

the basic REM is not appropriate to understand what drives network evolution. This

research extends the REM framework with approaches for testing and exploring time-vary-

ing network effects. First, we develop a Bayesian approach to test whether network effects

change during the study period. We conduct a simulation study that illustrates that the

Bayesian test accurately quantifies the evidence between a basic (‘static’) REM or a

dynamic REM. Secondly, in the case of the latter, time-varying network effects can be stud-

ied by means of a moving window that slides over the relational event history. A simulation

study was conducted that illustrates that the accuracy and precision of the estimates depend

on the window width: narrower windows result in greater accuracy at the cost of lower preci-

sion. Third, we develop a Bayesian approach for determining window widths using the

empirical network data and conduct a simulation study that illustrates that estimation with

empirically determined window widths achieves both good accuracy for time intervals with

important changes and good precision for time intervals with hardly any changes in the

effects. Finally, in an empirical application, we illustrate how the approaches in this research

can be used to test for and explore time-varying network effects of face-to-face contacts at

the workplace.

Introduction

Relational event history data consist of time-ordered sequences of events between individuals

[1]. For example, the relational event history in Table 1 consists of face-to-face contacts

between employees in the workplace [2]. For each event in the relational event history we

observe the time point and the individuals who are involved. Since relational event history

data capture the timing and sequencing of social interactions on a fine-grained timescale, this

type of data contain detailed information that helps us learn about interaction dynamics in
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social networks. The relational event model (REM) [1] analyzes relational event history data in

a direct manner without needing to aggregate over observational periods. The REM is there-

fore especially suited to study the drivers of the development of social interaction over time.

The REM models both when a social interaction occurs and who will be involved as a func-

tion of endogenous and exogenous variables. Temporal dependencies between the events in

the relational event history can be introduced into the model by including endogenous vari-

ables that refer to characteristics of the past history of events [1]. For example, triadic closure

[3] is an endogenous driving mechanism of social interaction in which individuals are more

likely to start an interaction with another individual if they have more past interaction partners

in common, i.e., “friends of friends become friends” [4]. Exogenous variables refer to any fac-

tor outside the history of events that influences social interaction occurrence. For example,

homophily, where individuals interact more with others with whom they share one or more

individual attributes, such as sex or age, is a well-documented tendency for many social net-

works [3, 5]. In sum, the REM enables a researcher to study to what extent a combination of

endogenous and exogenous variables drive the occurrence, rhythm, and speed of individuals

interacting with each other over time.

An important assumption of the basic REM is that the effects on social interaction occur-

rence are constant over the study period. It is, however, often more plausible that effects

change over time. Throughout this paper, we will refer to REM parameters that may change

over time as “dynamic,” “temporal,” or “time-varying.” In several articles, the importance of

evaluating the assumption of constant effects in REM’s has been emphasized (e.g., [4, 6, 7]).

First, because the REM assumes that the effects act homogeneously over the course of the

observed relational event history, the resulting parameter estimates average away any variation

that may be present. Application of a basic REM may thus mask variation of effects over time

and inferences drawn on the resulting parameter estimates may be erroneous as a result. Sec-

ond, time-varying parameters may be intrinsically interesting. Insights in how effects change

over time has the potential to progress the understanding of social interaction dynamics.

Studies that relax the assumption that effects are constant over the study period have indeed

found evidence for time-varying effects. For example, [6] propose to estimate separate models

in which the dependent variable is segregated in discrete time-intervals of interest. In an

empirical analysis of the drivers of patient referrals between hospitals, the authors expected

daily variations in the effects. Therefore, they estimated seven separate models, one for each

day of the week. Results confirmed that drivers of patient referrals between hospitals operated

differently for different days of the week.

Table 1. The first 10 events from a relational event history with face-to-face contacts between employees in the

workplace.

time employee 1 employee 2

08:00:40 0574 1362

08:00:40 0164 0779

08:01:00 0447 0763

08:01:00 0117 0429

08:01:40 0215 1414

08:01:40 0097 1204

08:01:40 0461 1245

08:01:40 0020 1209

08:01:40 0015 0020

08:02:00 0020 0985

https://doi.org/10.1371/journal.pone.0272309.t001
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The approach of [6] is especially suited when time-specific variation of the effects can be

expected beforehand based on theory. Unfortunately, since time is only limited accounted for

in current social network theories [7], it can be challenging to form theoretically informed

hypotheses on time-specific variations in the effects. Moreover, effects in relational event his-

tory data may develop irregularly or more smoothly over time. If this is the case, it becomes

infeasible to estimate separate models for different time periods. Hence, an approach that does

not put any constraints on the development of effects could assist to explore how effects in

REMs change over time.

The approach of [8] allows for time-varying regression coefficients in REMs. On synthetic

data, the authors illustrated that their model was able to accurately recover both underlying true

fixed and time-varying model coefficients. Furthermore, [8] compared the predictive power of a

model with time-varying coefficients (the additive Aalen model) and a model with fixed coeffi-

cients (the multiplicative Cox model). Results from their prediction experiment on an empirical

data set showed that the additive Aalen model significantly outperformed the multiplicative

Cox model. These findings further illustrate the importance of testing and accounting for tem-

poral dynamics of the effects in the analysis of empirical relational event history data.

A limitation of the additive Aalen model of [8] for practical use is that the form of the

model does not prevent against hazard functions that are estimated to be negative, which are

not defined in practice. The moving window approach of [9] for estimating time-varying

effects does not have this problem. In this extension of the REM, a moving window slides over

the observed relational event history and provides a picture of how the drivers of social interac-

tion develop over time. [9] show in an empirical analysis how the moving window approach

can be used to uncover new insights about interaction dynamics. For example, results showed

that homophily effects on the probability that employees send each other emails about innova-

tion changed gradually over the course of a year.

The current paper develops an extension of the REM for testing and exploring time-varying

effects in relational event history data. First, because of the importance of dynamic network

effects, we propose a Bayesian method that tests whether network effects change over time.

Such a test is currently missing in the literature. Second, because it is usually not known a priori

how well a moving window REM is able to find dynamic network trends, we conduct a simula-

tion study to investigate the accuracy and precision of the methodology. Third, because most

theories of social network behavior do not inform researchers on how network effects may vary

over time, we propose a data-driven moving window to appropriately balance between accuracy

and precision of the moving window REM. Finally, we illustrate the proposed methods in an

analysis of the drivers of face-to-face contacts between employees in a workplace [2].

The remainder of this paper is structured as follows. First, we provide a general introduc-

tion to the basic REM and describes an extension with time-varying network effects. Subse-

quently, we introduce a Bayesian approach for testing for dynamic network effects. A

simulation study is conducted to evaluate the ability of the test to distinguish between static

and dynamic network effects. Next, we introduce the moving window REM, with pre-specified

window widths and empirically determined window widths. A simulation study is conducted

to study how well the approaches can recover the underlying true time-varying parameters.

Subsequently, we describe the methods and results for the illustrative empirical analysis.

Finally, we end with a discussion of the research in this article.

A REM with time-varying network effects

At each observed time point t of the relational event history, the observed sender-receiver pair

(s, r) is one out of a set of sender-receiver pairs that can potentially interact. We refer to the set
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of sender-receiver pairs (s, r) that can potentially interact at time t as the risk set, RðtÞ. When

every actor can be both sender or receiver of the relational events and self-to-self events are

excluded, the risk set consists of N × (N − 1) sender-receiver pairs that can potentially interact,

with N referring to the total number of actors in the network.

Each sender-receiver pair (s, r) in the risk set RðtÞ occurs with its own rate in the observed

event history. We refer to this rate of occurrence at time t for sender-receiver pair (s, r) as the

event rate, λ(s, r, t). In the REM [1], the event rate is modeled as a log-linear function of endog-

enous and exogenous variables:

log lðs; r; tÞ ¼
XP

p¼1

ypXpðs; r; tÞ: ð1Þ

Here, Xp(s, r, t) refers to statistic p = 1, . . ., P for the actor pair (s, r) at time t and θp refers to

the model parameter related to statistic Xp. The statistics Xp(s, r, t) are numerical representa-

tions of the endogenous and exogenous variables in the model.

The event rate determines both the waiting time until the next event and which pair (s, r) is

most likely to occur next. Following [1], the waiting time Δt until the next event is assumed to

follow an exponential distribution:

Dt � Exp
X

ðs;rÞ2RðtÞ

lðs; r; tÞ

 !

: ð2Þ

The probability to observe the pair (s, r) next at time t follows from the categorical distribu-

tion:

P s; rð Þjtð Þ ¼
lðs; r; tÞ

P
ðs;rÞ2RðtÞlðs; r; tÞ

: ð3Þ

Throughout this paper, we consider a REM with dynamic network effects where the rate

parameter is defined by:

log lðs; r; tÞ ¼ ybaselineðtÞXbaselineðs; r; tÞ þ

yZ:of:senderðtÞXZ:of:senderðs; r; tÞ þ

ydifference:in:ZðtÞXdifference:in:Zðs; r; tÞ þ

yactivityðtÞXactivityðs; r; tÞ þ

yinertiaðtÞXinertiaðs; r; tÞ þ

ytransitivityðtÞXtransitivityðs; r; tÞ

ð4Þ

Here, Xbaseline(s, r, t) = 1 (i.e., an intercept), XZ.of.sender(s, r, t) is equal to the value of exoge-

nous variable Z of sender s, Z � N ð0; 1Þ, Xdifference.in.Z(s, r, t) is equal to the absolute difference

between the value of Z of sender s and receiver r, Xactivity(s, r, t) is equal to the standardized

outdegree of sender s at time t, Xinertia(s, r, t) is equal to the standardized number of past events

sent by sender s to receiver r at time t, and Xtransitivity(s, r, t) is equal to the standardized num-

ber of past outgoing two-paths between sender s and receiver r at time t. The corresponding

model parameters are referred to by θ and may vary over time.

We define the following four scenarios with time-varying parameters:
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1. Constant effects; in this scenario we assume that the effects of the statistics on the relational

event history are constant over time (i.e., they do not change). The corresponding model

parameters θ can be found in Table 2 and are visualized in Fig 1.

2. Cyclic change; in this scenario we assume cyclic changes in the effects of the predictors on

the relational event history over time. Here, we focus on the cases in which cyclic patterns

of change in the data are not necessarily expected beforehand, but are to be detected from

the data. Alternatively, when time-specific variation (e.g., weekdays versus weekend days or

daytime versus nighttime) can be expected to induce cyclic patterns in the effects of interest,

these can be studied with the approach of [6]. To let the model parameters change cyclically

over time, we use the following sine functions:

asin
2p

10000
t

� �

� b: ð5Þ

The values for a and b per predictor can be found in Table 2, the resulting model parame-

ters θ are visualized in Fig 1.

Table 2. Information on the model parameters in the four scenarios for time-varying effects.

Effect Constant Cyclic Gradual Mixed

θ a b c d Change

Baseline -8.00 0.50 -8.00 1.00 -8.50 Cyclic

Z of sender 0.20 0.10 0.20 0.20 0.10 Constant

Difference in Z -0.20 0.10 -0.20 0.20 -0.30 Constant

Activity of sender 0.10 0.05 0.10 0.10 0.05 Cyclic

Inertia 0.10 0.05 0.10 0.10 0.05 Gradual

Transitivity 0.20 0.10 0.20 0.20 0.10 Gradual

https://doi.org/10.1371/journal.pone.0272309.t002

Fig 1. Parameters in the four scenarios for time-varying effects. Solid lines show the parameters for the constant

effects in the ‘constant’ and ‘mixed’ effects scenarios, dashed lines show the parameters for the cyclically changing

effects in the ‘cyclic’ and ‘mixed’ effects scenarios, and dotted lines show the parameters for the gradually changing

effects in the ‘gradual’ and ‘mixed’ effects scenarios.

https://doi.org/10.1371/journal.pone.0272309.g001
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3. Gradual change: in this scenario we assume that the effects of the predictors on the rela-

tional event history change gradually over time until they stabilize at a “new normal.” To let

the model parameters change gradually over time we use the following logistic function:

c
1þ exp ½� 0:001ðt � 12500Þ�

þ d ð6Þ

The values for c and d per predictor can be found in Table 2, the resulting model parameters

θ are visualized in Fig 1.

4. Mixed change: in this scenario we assume that some effects of the predictors on the rela-

tional event history stay constant over time, others change cyclically and the remaining

effects change gradually. Table 2 shows per predictor the type of change for this scenario in

which how the effects change over time is mixed.

These four scenarios for time-varying parameters were chosen to include a baseline sce-

nario with no changes in the effects (constant effects), two scenarios in which effects change

over time in a realistic way that may be encountered in empirically collected relational event

history data (cyclic and gradual effects) and a scenario in which not every effect changes over

time in the same manner (mixed effects). We assume that these four scenarios provide a thor-

ough evaluation of the ability of the methods to capture a diversity of ways in which effects in a

REM can vary over time.

For each of these four scenarios, we generate 200 relational event histories with M = 10000

events for a network with N = 20 actors. Sampling of the events starts at t = 0 and continues

until 10000 events are reached. At a given time t, we sample the waiting time Δt until the next

event from Eq (2) and the next observed dyad (s, r) from Eq (3). The script files to generate the

data and reproduce the analyses performed in this article can be found at https://github.com/

mlmeijerink/REHdynamics.

Testing for time-varying network effects

The first step in an empirical analysis of temporal network data is to test whether it is likely

that the effects that drive the interaction between the actors can be assumed constant over the

observation period. For this purpose, we formulate two competing hypotheses:

Hstatic : network effects are static ð7Þ

versus

Hdynamic : network effects are dynamic: ð8Þ

To evaluate the support in the data for these two competing hypotheses, we divide the

observed relational event history into K sub-sequences that are evenly spaced in time, see Fig

2. For example, let τ define the time of the end of the observation period. Than, for K = 2, we

obtain two sequences, one with the events observed in the time interval 0; t
2

� �
, and one with

the events observed in the time interval t

2
; t

� �
, see Fig 2, upper panel. Subsequently, for each

sub-sequence k = 1, . . ., K, the vector with model parameters θk is estimated. The hypotheses

in Eqs (7) and (8) can now be re-written as

Hstatic : θ1 ¼ � � � ¼ θk ¼ � � � ¼ θK ð9Þ
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versus

Hdynamic : not Hstatic: ð10Þ

We propose to compute Bayes factor [10, 11] for the evaluation of the two competing

hypotheses in Eqs (9) and (10). In contrast to null hypothesis significance testing, the objective

of hypothesis evaluation using Bayes factor is not to arrive at a dichotomous decision on

whether a hypothesis is rejected or not, but to determine the probability of the data under one

hypothesis versus another hypothesis [12]. For example, a Bayes factor of 10 for the compari-

son of Hstatic against Hdynamic indicates that there is 10 times more statistical evidence in the

data for the hypothesis that effects are static compared to the hypothesis that effects are

dynamic.

Due to prior sensitivity of Bayes factor, we propose to use the multiple population adjusted

approximate fractional Bayes factor (from now on abbreviated to BF), which can be computed

in an automatic fashion without having to formulate any substantive prior beliefs [13–16]. The

BF uses a fraction bk of the information in the likelihood for each sub-sequence k to construct

an implicit default prior [14, 16]. We follow the recommendation in [14], and choose

bk ¼
1

K
� J� �

1

Nk
; ð11Þ

Fig 2. Illustration of the procedure behind the Bayesian test for time-varying network effects in relational event

history data. The observed relational event history is divided into K sub-sequences that are evenly spaced in time. For

each sub-sequence k = 1, . . ., K the vector of model parameters θk is estimated. The statistical evidence in the data for

Hstatic: θ1 = � � � = θK versus Hdynamic: not Hstatic is evaluated by means of the BF.

https://doi.org/10.1371/journal.pone.0272309.g002

PLOS ONE Dynamic relational event modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0272309 August 1, 2022 7 / 23

https://doi.org/10.1371/journal.pone.0272309.g002
https://doi.org/10.1371/journal.pone.0272309


where J� refers to the number of independent constraints in Hstatic (i.e., J� = K − 1), and Nk

denotes the number of events in sub-sequence k. From [14], it follows that the relative support

in the data for Hstatic and Hdynamic can be quantified using:

BF ¼

Z

y2Hstatic

N ðθjθ̂; Σ̂θÞdθ
Z

y2Hstatic

N ðθjθB; Σ̂b
θÞdθ

; ð12Þ

that is the ratio of the fit and the complexity of Hstatic relative to Hdynamic. Here, θ = [θ1, . . .,

θk, . . ., θK], θ̂ denotes the maximum likelihood estimate of θ, Σ̂θ denotes the corresponding

co-variance matrix, θB is the adjusted mean of the prior distribution, here, 0, i.e., a value of θ
on the boundary of all hypotheses under investigation [15], and Σ̂b

θ denotes the covariance

matrix of the prior distribution of θ, which is based on a fraction b of the information in the

data, where b = [b1, . . ., bk, . . ., bK]. Maximum likelihood estimates θ̂k, and, for each sub-

sequence k, corresponding covariance matrix Σ̂θk
, are easily obtained from R software pack-

ages tailored for relational event modeling, and Σ̂bk
θk

is computed as
Σ̂θk
bk

. The BF factor shows

consistent behavior, which implies that the evidence for the true hypothesis will increase to

infinity as the sample size grows [11, 14].

We recommend to compute the BF for increasing K from 2 to 10 (or more in the case of

unclear results). By considering multiple values for K, we get insights into the time scale of the

dynamic behavior of the network effects. Further, note that as K increases, the number of

parameters under Hdynamic increases and thus the evidence for Hstatic will increase if the data

suggest that the static REM fits bests.

In order to evaluate the ability of the proposed Bayesian test to prefer the true model (Hstatic

or Hdynamic), we conduct a simulation study. We compute the BF factor for the evaluation of

Hstatic versus Hdynamic with K = 2, . . .10 for the 200 generated relational event histories in the

four time-varying effects scenarios. Results in Fig 3 show the mean log BF and its 95%

Fig 3. Results for the numerical evaluation of the Bayesian test for time-varying parameters. The y-axis shows the

size of the log BF, i.e., the weight of the evidence for the static hypothesis versus the dynamic hypothesis. Black dots

and solid lines show per effect scenario the mean log BF with increasing K. The gray area shows the 95% sampling

distribution of the log BF.

https://doi.org/10.1371/journal.pone.0272309.g003
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sampling distribution across the increasing values of K. If the log BF is larger than zero, this

implies most evidence in the data for Hstatic. If the log BF is smaller than zero, most evidence in

the data is in favor of Hdynamic.

The upper left panel in Fig 3 shows that in the ‘constant’ effects scenario, the evidence is on

average largest for the static hypothesis. In fact, the log BF is in favor of the true model (Hstatic)

for all K = 2, . . ., 10 in all 200 generated data sets, i.e., in all data sets the results of the test indi-

cate that the relational event history can be best analyzed with a static REM. These results are

what is wanted because the effects in the relational event histories don’t change over time in

this scenario. Furthermore, the results show that the evidence increases with increasing K.

This shows that the BF functions as an Occam’s razor that penalizes larger models. Results in

the other panels of Fig 3 are indicative of time-varying parameters: for almost all K (except

K = 2 and K = 3 in the “cyclic” scenario) the evidence in the data is largest for Hdynamic. These

results are what one wants, because these three scenarios include time-varying parameters.

Hence, based on these results, the proposed Bayesian test for time-varying parameters seems

to be able to accurately distinguish between data with static and dynamic effects and to provide

guidance as to whether the relational event history can best be analyzed with a static REM or

whether a more dynamic approach is required.

Exploring time-varying network effects

Moving window REM

A few studies have explored time-varying network effects in relational event history data by fit-

ting the model on different observational periods [6, 9, 17]. Here, we propose to use a moving

window REM for exploring time-varying network effects. Algorithm 1 describes the steps in

fitting a moving window REM. In summary, a REM is fitted on the sub-sequence of events

that fall within a pre-specified time-interval or ‘window.’ By sliding this window over the rela-

tional event sequence and estimating the REM for each corresponding sub-sequence of events,

a view of the trend in the parameter estimates over time is obtained.

Algorithm 1: Moving window REM
input: A relational event sequence with M events between t = 0 and t =

τ.
1 Set the window width ℓ;
2 Set the proportion of overlap between subsequent windows π;
3 Start at the first window w = 1;
4 while (ℓ + (w − 1)πℓ) � τ do
5 Select the set of events observed in the time-interval between [(w

− 1)πℓ, ℓ + (w − 1)πℓ];
6 Compute the statistics X(s, r, t) for the selected events in the

window w;
7 Estimate the vector of model parameters θw for the selected events

in the window w;
8 Continue at the next window w = w + 1;
output: Vector of estimated model parameters θw for each window w.

As Algorithm 1 states, the researcher has to define the window width and the proportion of

overlap between subsequent windows. A higher number of events that overlap between subse-

quent windows results in greater smoothness of the results. Numerous factors play a role in

determining the window width, including the following:

1. Social theory or field knowledge. In certain situations, social theory or field knowledge can

suggest how fast social interaction behavior changes over time. In these situations, the win-

dow width should correspond to the expected rate of change of the effects, i.e., a narrow
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(wide) window should be used when theory dictates that interaction behavior is highly

(hardly) dynamic.

2. Research question. A window width should be chosen corresponding to the research ques-

tion at hand, e.g., are researchers interested in daily, monthly, or annual dynamics?

3. Resolution of the data. In certain situations, the possible window widths may be limited by

the resolution of the data, e.g., whether the time of the events is available in seconds, hours,

or days.

4. Precision/accuracy trade-off. A window should be wide enough so that enough events fall

within each window to estimate effects with sufficient precision. At the same time, a win-

dow that is too wide may average out small or moderate changes in the effects, resulting in

loss of accuracy of the estimates. Unfortunately, studies into the power, accuracy and preci-

sion of REMs are currently limited. The results of one study suggest 100 events per actor to

achieve good power [18].

A data-based method for balancing precision and accuracy in moving

window REMs

One challenge of the moving window approach is to determine the window width that can

best capture how the effects on social interaction develop over time. The moving window

REM uses a fixed window width and slides that window across the entire event sequence.

However, in certain situations the time-varying parameters may change quite fast and quite a

lot in some parts of the observation period and a lot less in in other parts (e.g., see the “gradual”

time-varying effects scenario). In these situations, an optimal precision/accuracy trade-off can

only be achieved by allowing the window widths to themselves vary over time. Unfortunately,

considering that most research on relational event histories is still fairly exploratory, there is

little theory yet to guide us how to set the window width in which part of the observation

period. For this reason, we propose a method to empirically determine the window width

based on the observed event history, where a narrow (wide) window is used during phases

when the data show important (hardly any) changes in social interaction behavior, balancing

precision and accuracy of the parameter estimates.

The steps in the procedure for the data-driven moving window REM are described in Algo-

rithm 2. We make use of the BF to determine the window width around a given time point.

Due to the Occam’s razor, the BF is very suitable to optimize the window width around a given

time point by balancing between precision and accuracy. More events will be preferred when

possible, and fewer events when necessary. First, at a given time point t, a small window width

is proposed. We evaluate if the effects around t change during the proposed window width by

computing the BF for the evaluation of Hstatic (Eq 9) versus Hdynamic (Eq 10) with K = 3 for the

events in this window. If the log BF is larger than zero, there is more evidence in the data for

the static hypothesis, i.e., the BF indicates that the effects do not change during the proposed

window around t. Subsequently, we repeatedly increase the window width, i.e., repeatedly

select more events to estimate the effects around t. For each increased window width, we evalu-

ate if the effects change during the window around t by computing the BF with K = 3. As long

as the log BF is larger than zero, we can conclude that the effects during the window do not

change. In the algorithm, we implement a stopping rule to increase its computational effi-

ciency. That is, we stop increasing the window width around t when the log BF is smaller than

log 1

10
, i.e., there is ten times more evidence in the data in favor of the dynamic hypothesis.

When this happens, we set the window width around t equal to the window width for which
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BF was maximum, i.e., there was most evidence in the data for static effects. This allows us to

estimate the vector of model parameters at t with more events when possible (when effects do

not change) and fewer events when necessary (when effects change), hence with maximum

precision and accuracy. The algorithm for the data-driven moving window REM only requires

a minimum window width to be set.

Algorithm 2: Data-driven moving window REM
input: A relational event sequence with M events between t = 0 and t =

τ.
1 Set the minimum window width ℓmin;
2 Define the set of time points T around which an optimal window width
will be determined as follows: T ¼ f1

2
‘min;

1

2
‘min þ

1

3
‘min;

1

2
‘min þ

2

3
‘min; . . .g;

3 for t 2 T do
4 Set the window width around t equal to ℓ = ℓmin around t;
5 Select the set of events observed in the time-interval between [t −

ℓ, t + ℓ];
6 Compute the statistics X(s, r, t) for the selected events in the

window around t;
7 Compute the BF with K = 3 for the selected events in the window

around t;
8 if log BF � log 1

10
then

9 Increase ‘ ¼ ‘þ 2

3
‘min;

10 Start again at line 5;
11 else
12 Set the window width around t equal to the ℓ for which BF was

maximum;
13 Estimate the vector of model parameters θt with the events in

the window;
output: Vector of estimated model parameters θt for each time point t

2 T.

Numerical evaluation

We conduct a simulation study to assess the accuracy and precision of the moving window

REM with fixed (Algorithm 1) and data-driven (Algorithm 2) window widths. First, we fit a

“static” REM to the 200 generated relational event histories in the four time-varying effect sce-

narios. Second, we fit a moving window REM with fixed window widths. To study the accu-

racy and precision across window widths, we apply three different window widths (1000t/
‘small’, 2000t/‘medium’, and 4000t/‘large’). We slide the windows such that they have a two-

thirds overlap with the previous window. Finally, we fit a data-driven moving REM. The mini-

mum width is set equal to 1000t. Statistics are computed with the R package REMSTATS, estima-

tion of the model parameters is done with the R package REMSTIMATE. Both these R package are

available for download at https://github.com/TilburgNetworkGroup.

Figs 4–6 show the results of the numerical evaluation for the ‘transitivity’ effect. Results for

the other effects show similar patterns, see S1 File. Furthermore, Fig 7 shows the average data-

based window width per time point as determined by the data-driven moving window REM.

Fig 4 shows the average estimated model parameter over time. First, results in the top row

of Fig 4 show that the “static REM” averages out any time-variation that is present. Further-

more, results in Fig 4 show that the moving window REM, both with fixed and data-driven

window widths, is able to provide an informative view of the underlying trend in parameters

over time. The accuracy and precision of this view, however, depend on the window width and

the extent and kind of time-variation of the parameters, as shown in more detail in Figs 5

and 6.
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Fig 4. Results from the evaluation of the (moving window) REM for the ‘transitivity’ effect. Rows show results for

estimation of the ‘transitivity’ effect with the ‘static’ REM, large (4000t), medium (2000t), small (1000t), and data-based

window widths, respectively. Columns show results for estimation of the ‘transitivity’ effect in the four time-varying

effects scenarios. Solid lines represent the mean estimated parameters over 200 datasets over time. The gray area

represents the range with 95% of the estimates for the 200 datasets. Dashed lines represent the parameters used for data

generation.

https://doi.org/10.1371/journal.pone.0272309.g004

Fig 5. Bias for the ‘transitivity’ effect in the evaluation of the moving window REM. Panels refer to the four time-

varying effect scenarios. Solid lines represent the bias of the parameter estimates over time, with colors representing

estimation with large (4000t), medium (2000t), small (1000t) and data-based window widths.

https://doi.org/10.1371/journal.pone.0272309.g005
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Fig 5 provides some insights in the accuracy of the moving window REM. We use the bias

of the estimated parameters as a measure of accuracy. The bias quantifies how well the true

underlying parameter θ is quantified by the estimator on average. For time t, it is calculated as

biasðtÞ ¼
1

nsim

Xnsim

i¼1

ŷ iðtÞ � yðtÞ; ð13Þ

where nsim denotes the number of simulated datasets—here 200, ŷ iðtÞ denotes the estimated

parameter in dataset i at time t and θ(t) denotes the true parameter at time t. We highlight

three interesting results that follow from Fig 5. First, the results for the data generated in the

Fig 7. Average data-driven window width found in the data-driven moving window REM for the four time-

varying effect scenarios. Horizontal dashed lines refer to the different fixed window widths evaluated for the moving

window REM, i.e., large (4000t), medium (2000t), small (1000t).

https://doi.org/10.1371/journal.pone.0272309.g007

Fig 6. Average estimated standard error (SE) for the ‘transitivity’ effect in the evaluation of the moving window

REM. Panels refer to the four time-varying effect scenarios. Solid lines represent the average estimated SE of the

parameter estimates over time, with colors representing estimation with large (4000t), medium (2000t), small (1000t)
and data-based window widths.

https://doi.org/10.1371/journal.pone.0272309.g006
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‘constant’ scenario (upper left panel) indicate that the bias of the estimates in the moving win-

dow REM, both with fixed and data-driven window widths, is generally very low, -the moving

window REM is able to estimate effects with good accuracy. Second, results indicate that the

bias of the parameter estimates can become quite large if effects do change and the window

widths are too large to capture that change. For example, the upper right panel of Fig 5 shows

that the largest window widths are clearly too large to accurately estimate the highly dynamic

transitivity effect in the data generated in the ‘cyclic’ scenario. Third, since smaller window

widths signify greater model flexibility, it follows that bias is lower for smaller window widths.

For all three time-varying effects scenarios, the bias is estimated to be reasonable small for

medium, small and data-driven window widths. In sum, when effects are quite stable, bias is

low for all window widths. When effects are highly dynamic, however, smaller window widths

clearly outperform larger window widths by having lower bias. The algorithm for data-driven

window widths enables us to find out when effects are highly dynamic, and thus window

widths should be small.

Fig 6 provides insight into the precision of the moving window REM. We use the average

estimated standard error (SE) of the parameters as a measure of precision. Following [19], it is

calculated as

average estimated SEðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nsim

Xnsim

i¼1

dVarðŷ iðtÞÞ

s

: ð14Þ

As expected, Fig 6 shows that the average estimated SE is larger for smaller windows in all

four scenarios. While smaller windows may provide higher accuracy of the estimated parame-

ters when effects are highly dynamic, this comes at the costs of lower precision since fewer

events are contained inside each window. The upper left panel of Fig 6 shows that in the ‘con-

stant’ scenario, the average estimated SE increases over time, even though the effects do not

change. This is most likely due to the increased variability in the statistics over time, as the net-

work that is observed grows. A similar pattern is also observed in the other time-varying effect

scenarios. The upper right panel of Fig 6 shows the average estimated SE in the ‘cyclic’ sce-

nario. As can be seen, the trend in size of the average estimated SE mirrors the trend of the

parameters over time. This is mainly due to the fact that, when the baseline and other effects in

the model are smaller, fewer events are generated/observed, leading to an increase in the esti-

mated SE. A similar pattern is also observed in the ‘gradual’ and ‘mixed’ scenarios. Finally,

from Fig 5 we could conclude that when effects were highly dynamic the bias was reasonably

low for medium, small and data-driven window widths. The advantage of the data-driven win-

dow widths was that they enable us to find out when effects are highly dynamics and small(er)

window widths are therefore required to estimate effects with enough accuracy. From Fig 6,

we see another advantage from the data-driven window widths: they allow us to find out when

effects are stable enough to increase the window widths to estimate effects with greater preci-

sion (smaller SE). This becomes especially apparent in the “gradual” change scenario, depicted

in the lower left panel of Fig 6. Here, the SE is considerably lower for the data-driven window

widths compared to the small and medium fixed window widths for the first half and towards

the end of the study period, i.e., when effects are more stable.

In sum, results from the numerical evaluation show that the moving window REM is able

to provide a clear view of the trend in parameters over time. However, the window width influ-

ences the accuracy and precision of this view, depending on how much the parameters vary

over time. Results further show that we can use the proposed algorithm for data-driven win-

dow widths to find out when effects are highly dynamic and we should decrease the window
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widths to estimate effects with greater accuracy, and when effects are stable enough to increase

the window widths to estimate effects with greater precision.

Application: Time-varying network effects in workplace contacts

With the methods in place, we now perform an illustrative empirical analysis to demonstrate

1) the use of the Bayesian test for time-varying network effects and 2) the moving window

REM with fixed and data-based window widths for exploring time-varying network effects. In

particular, we focus on how past interaction behaviors (i.e., endogenous mechanisms) affect

future contacts between the employees and how these effects change over time. The script files

to reproduce the analyses can be found at https://github.com/mlmeijerink/REHdynamics.

Data

The data set contains the face-to-face contacts between 232 employees of an organization in

France, measured during a 2 week time period in 2015 [2]. These face-to-face contacts were

measured with close-range proximity sensors. Following [2], a contact between two employees

is defined as “a set of successive time-windows of 20 seconds during which the individuals are

detected in contact, while they are not in the preceding nor in the next 20 second time win-

dow.” We formally represent a relational event between two employees as the triplet (s, r, t),
where s and r refer to the employees who are in contact and t refers to the start time of the

face-to-face contact in seconds since onset of observation. The events do not distinguish

between a sending and receiving individual, i.e., the relational events are undirected. The first

ten events in the sequence are shown in Table 1. In total, 33751 relational events are observed

over the course of the study period. The top panel in Fig 8 shows the distribution of events

over time. The number of events per day ranged from 1778 to 5905 with a mean of 3375

(SD = 1166). In the analysis, idle periods, such as non-working hours and weekends, were dis-

carded from the data. Between events that have a same timestamp, a time difference is induced

such that these events are evenly spaced in time between the current time unit and the next

time unit. The risk set consists of every undirected employee pair that can potentially interact,

i.e., 232�231

2
¼ 26796 pairs. Across the entire relational event history, the number of events per

employee ranged from 0 to 1147 with a mean of 291 (SD = 206). The majority of actors (217,

94%) were involved in at least one event during the study period. The number of events per

employee pair ranged from 0 to 506 with a mean of 1 (SD = 8) and there were 4274 employee

Fig 8. Descriptive information of the empirical data. The top panel shows the frequency distribution of the events in

the relational event sequence over time. The bottom panel shows the frequency distribution of the employees over the

departments.

https://doi.org/10.1371/journal.pone.0272309.g008
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pairs (16% of the risk set) with at least one event during the study period. Besides the face-to-

face contacts, information on the departments in which the employees work is available. The

bottom panel in Fig 8 shows the frequency distribution of study participants over the

departments.

Model specification

The following describes the statistics that are used to model the rate (see Eq 1) at which the

employee pairs start face-to-face interactions.

Intercept. Firstly, an intercept is included in the model to capture the baseline tendency

for interaction in the employee network. The statistic Xintercept(s, r, t) is equal to 1 for all (s, r,
t). The corresponding effect βintercept refers to the log-inverse of the average number of events

per time unit (here, seconds) for an employee pair that scores zero on all other statistics in the

model.

Same department. Previous research has shown that the number of contacts between

employees is strongly influenced by the departmental structure of the organization [20].

Since employees who work in the same department are likely to have a greater opportunity to

interact, the statistic Xsame.department(s, r, t) is included in the model to capture whether the

employees of the pair (s, r) work in the same department (1 = yes, 0 = no). A positive effect

βsame.department implies that employees who work in the same department start future interac-

tions with a higher event rate with each other compared to employees who work in different

departments.

Recency. A previous REM analysis of email communication between employees of an

organization showed that individuals were more likely to send an email if the last email sent

was more recent [9]. Here, we are interested in the question whether such recency effects

transfer to face-to-face interactions. Moreover, previous research into the validity of using sen-

sor-based measures of face-to-face interactions has shown that merging interactions that

occurred close to reach other in time improved the accuracy [21]. It is possible that individuals

physically move away from each other during a face-to-face interaction in such a way that a

longer interaction is recorded as two or multiple shorter interactions by the sensors. Hence,

the speed of interaction is possibly confounded by this specific source of measurement error.

By including a recency effect, we can control for this in the estimated sizes of the other effects

in the model. Since we have undirected events, we include an effect to control for the effect of

how recently the employee pair (s, r) interacted last. Let τ(s, r) refer to the time of the most

recent event between the employee pair (s, r), then

Xrecencyðs; r; tÞ ¼
1

ðt � tðs; rÞÞ þ 1
:

A positive effect βrecency implies that employee pairs who interacted more recently tend to

engage in future interactions at a higher rate than employee pairs whose last interaction was

less recent.

Inertia. Inertia refers to the tendency of individuals to repeat past interactions, or the ten-

dency of “past contact to become future contacts” [4]. [4] suggest that, following general theo-

ries of social networks, inertia is an important predictor of social interaction occurrence.

Previous research on communication between employees has repeatedly found inertia to posi-

tively predict the event rate [18, 22–24]. Hence, we may expect that inertia plays an important

role in our data as well. We are especially interested in how the effect of inertia develops over

time in the employee network. The statistic Xinertia(s, r, t) is based on a count of past (s, r)
events before time t. Let m = 1, . . .M refer to the mth event in the relational event history and
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let (sm, rm) and tm refer to the employee pair and time of the mth event, respectively, then

Xinertiaðs; r; tÞ ¼
XM

m¼1

Iðtm < t ^ fsm; rmg ¼ fs; rgÞÞ:

To ensure that the statistic is well-bounded (e.g., see [18, 25]), we standardize the statistic

per time point t by subtracting the mean of Xinertia(t) from Xinertia(s, r, t) and subsequently

divide by the standard deviation of Xinertia(t). A positive effect βinertia implies that employee

pairs who have interacted more with each other in the past tend to engage in future interac-

tions at a higher rate than employee pairs who have interacted less with each other in the past.

Triadic closure. Triadic closure refers to the tendency of ‘friends of friends to become

friends’ [4]. [4] suggest that, following general theories of social networks, triadic closure is an

important predictor of social interaction occurrence. Previous research on communication

between employees has repeatedly found triadic closure to positively predict the interaction

rate [18, 22–24]. Hence, we may expect that triadic closure plays an important role in our data

set as well. We are especially interested in how the effect of triadic closure develops over time

in the employee network. The statistic Xtriadic.closure(s, r, t) is based on a count of the past inter-

actions with employees h that employees s and r both interacted with before time t: Let A refer

to the set of employees in the network, then

Xtriadic:closureðs; r; tÞ ¼
X

h2A

min
�
XM

m¼1

Iðtm < t ^ fsm; hmg ¼ fs; hgÞ;

XM

m¼1

Iðtm < t ^ frm; hmg ¼ fr; hgÞ
�

:

We standardize the triadic closure statistic in the same manner as the inertia statistic. A

positive effect βtriadic.closure implies that the rate of interaction increases as employees have

more common past interaction partners.

Testing for time-varying network effects

We first test for time-varying network effects. Results in Fig 9 show that the BF indicates more

evidence in the data for the hypothesis that the effects change over the course of the relational

event sequence rather than remaining constant over time. This holds for every number of sub-

Fig 9. Results for the tests for time-varying network effects in the empirical data. Weight of the evidence (log BF)

for the static vs. dynamic hypothesis with K = 2, . . ., 10 for the relational event history with face-to-face contacts in the

workplace.

https://doi.org/10.1371/journal.pone.0272309.g009
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sequences K = 2, . . ., 10. Hence, these results indicate the need to a dynamic analysis of the

face-to-face interactions between these employees.

Exploring time-varying network effects

We implement the required dynamic model by means of a moving window REM; this allows

us to study the time variation of the effects that influence employee interaction. We apply two

different fixed window widths to explore the time-varying network effects: 6 hours and 2

hours. The number of events within the windows range from 375 to 4660 (mean = 1632,

SD = 781) and 11 to 2877 (mean = 555, SD = 423), respectively. We also apply the algorithm

for data-driven window widths (see Algorithm 2) with a minimum window width of 1 hour.

The results for the two moving window REM’s with fixed windows widths and the REM

with data-driven window widths are shown in Fig 10. These results show that the largest win-

dow (6h) shows the general trend of how the effects develop over time, but it does not pick up

many nuances in them. The results suggest that some variations in the effects during the day

exist. The smallest window (2h) show these daily variations in more detail, informing us about

the magnitude in change of the effects during the day. The results of the data-driven window

widths are mostly comparable to the results of the 2h window widths. For most time points,

we see a fraction more detail for the data-driven window widths compared to the 2h window

widths. For other windows, we see a fraction more precision, i.e., smaller standard errors, for

the data-driven window widths compared to the 2h window widths. These results suggest that

interaction patterns in the respective workplace are highly dynamic over the course of the

study period (changing every 1

3
� 60 ¼ 20 minutes) and longer periods of stability of the

effects do rarely exist.

Overall, results from the analysis with the moving window REM seem to suggest a basic

level of importance of the effects throughout the study period. The smaller window width

informs us that the general trends over time do not tell us the whole story. All effects show

some variation in strength during the working days, through patterns that seem to repeat

themselves for most working days. The baseline rate of interaction seems to follow the same

pattern every day, with less events during the beginning and the end of the working day and a

small drop in the baseline rate around lunch. The results show some evidence that, aside from

a baseline importance of the effect of transitivity throughout the study period, its effect on the

event rate increases during the day and then resets again at the beginning of a new day. This

pattern is especially observed on the first few days. Furthermore, there seems to be a drop in

the importance of the effect around noon. Working in the same department has a strong posi-

tive effect on the event rate throughout the study period. This effect seems to become an even

more important predictor of interaction towards the end of each working day. For recency, it

seems that the effect increases somewhat in strength on the third day and then essentially stabi-

lizes. Within these fairly stable period there are several times where recency is higher for

awhile. This may be due to a number of reasons, for example because of tasks performed in

teams or project work. When these periods of relatively high recency occur, they seem to be

concentrated around the end of the working day. The effect of inertia starts strong at the

beginning of the study period, but decreases until the fourth day, after which it slowly increases

again. This may be due to external influences, for example the end of a large project and the

beginning of a new one. Throughout the days, inertia seems to be relatively more important in

between the beginning of a working day and noon, and in between noon and the ending of the

working day—i.e., the periods during the day when working in the same department was less

important. This may point towards employees repeatedly working together on projects,

regardless of the department they are in. Overall, it seems to be the case that around noon the
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Fig 10. Results for the moving window REM analysis of the relational event sequence with face-to-face contacts in

the workplace, both with fixed and data-driven window widths.

https://doi.org/10.1371/journal.pone.0272309.g010
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pattern of work-related interaction may be broken up by the lunch break and, potentially,

social interaction with other employees. However, the data set lack this type of contextual

information to corroborate this explanation.

Discussion

The current research proposed three methods to progress the study of temporal effect dynam-

ics in relational event history data. First, we proposed a Bayesian approach to test if effects

truly change over time. Results showed that the approach is able to provide guidance on

whether effects barely change (and a static REM can be applied) or whether effects change con-

siderably (and a dynamic approach is required for the analysis). Second, we argued that the

moving window approach enables us to study how effects in relational event history data

develop over time. Results of a simulation study provided a proof of concept for the moving

window approach. The moving window approach was able to recover the time-varying regres-

sion coefficients and provide a clear picture of how effects change over time. The accuracy and

precision of this picture depend on the window width, with narrower windows resulting in

greater accuracy at the cost of lower precision. Finally, since it can be challenging to determine

the width of the window for the moving window REM, we propose an algorithm that finds

flexible window widths based on the empirical data. The algorithm makes windows wider

when effects are stable and narrower when they are dynamic. Results from the simulation

study showed that the flexible windows lead to greater precision for time intervals in which

effects were hardly changing and greater accuracy for time intervals in which effects did change

greatly over time.

This was also highlighted in the empirical example. Wide fixed windows were able to

uncover broad trends, but clearly lacked detail. Making the windows narrower increased this

detail, but frequently led to windows that did not have enough observations in them to be suf-

ficiently precise. This is fixed by the data-driven method with flexible window widths, although

it will rarely be possible to precisely uncover dynamics in time periods with inherently few

events anyway.

The illustrative analysis shows us that the models can indeed retrieve how the dynamics of

social interactions change over time. The explanation of what is causing such changes may

require additional data. In the empirical example, it appears that there is a lunch effect. To

establish this with more certainty, one would like data about what indeed happens in this orga-

nization around noon. Do employees lunch together in a cafeteria? If so, it makes sense that

interaction may then be driven by other factors than during the regular working hours. Or do

the employees lunch with their own team? Or does the organization offer a different activity at

noon’s? Similarly, we noted that recency is more important during short times (say, periods of

1–2 hours). It would be insightful to know what happened: did colleagues get together to

jointly solve work-related problems in those periods? If so, that would (partly) explain the

increased recency during those times. There may be other reasons for these effects as well. A

dynamic REM approach that allows effects to vary over time is most informative when addi-

tional data are available to provide the context within which the interaction take place. Such

data may often not be relational event type data and may not always be collected by a

researcher who collects data that will be fed into a REM analysis. Our research, however, sug-

gests that such additional data may be highly useful. For employees in an organization, a

researcher would like to know at what times formal meetings are scheduled and who is sup-

posed to attend. We would like to know how the work day is organized and which routines are

built in (cf., [26]). Moreover, in the current analysis we focus on modeling the predictors of

face-to-face interactions between employees in the office space. In many organizations,
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employees interact via different modes of communication, e.g., face-to-face interactions, e-

mail messages, phone calls, etc. In addition, employees may develop social relationships out-

side of the office space. All these factors are likely to affect the patterns of observed face-to-face

interactions between employees in the office space. In the current analysis, we are restricted

due to the limited available information in the data. When such information would be avail-

able, however, it is recommended to consider it in the configuration of the predictor variables

to obtain a more detailed understanding of the dynamics of employees’ face-to-face interac-

tions (e.g., see [27]).

In the last decade, several approaches for modeling relational event data have been intro-

duced (e.g., [1, 8, 22, 28, 29]). Generally, differences between these approaches are small and

affect mostly the interpretation of the estimated model parameters [30]. Therefore, while the

current research focused on the REM framework [1], we expect that the approach can general-

ize to other approaches for modeling relational events.

Conclusion

This paper has provided a tool set for testing for and exploring time-varying network effects in

relational event history data. These methods enable researchers to gain insights into how driv-

ing mechanisms of social interactions develop over time; when their effects increase, decrease,

or remain stable, when effects kick in, how long effects last, et cetera. In the social sciences,

there is a dearth of truly time-sensitive theory. As a result, researchers have little guidance in

theorizing about when events happen, for how long, and what makes events happen at some

points in time but less so at others? We believe that empirical findings by models like the REM

can inform the development of time-sensitive theory in the long run. In the current paper, we

have suggested a way to make REMs even more informative, by acknowledging that the drivers

of social interaction are unlikely to remain constant over time. If we find that organizational

routines such as joint lunches break the interaction routines from the first half of the work

day, this can inform more nuanced theory building to help us understand how time-specific

institutions affect our work interactions. Similarly, it might help us understand how some dis-

ruptions (such as routinized lunch time) do not structurally impact employee interaction pat-

terns (employees will likely “continue where they left off” after lunchtime is over), whereas

other kinds of disruptions (e.g., the company internet going down, a visit by a boss, a joint

company meeting, a fire drill, a visit to a customer, et cetera) do have the potential to

completely reset the interaction dynamics for the day. This is both interesting from an empiri-

cal point of view and important for the development of theory of how human interaction is

shaped, maintained, and developed.
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