
  

 

 

Tilburg University

Separating the wheat from the chaff

Karimova, Diana; Leenders, Roger; Meijerink-Bosman, Marlyne; Mulder, Joris

Published in:
Social Networks

DOI:
10.1016/j.socnet.2023.02.006

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Karimova, D., Leenders, R., Meijerink-Bosman, M., & Mulder, J. (2023). Separating the wheat from the chaff:
Bayesian regularization in dynamic social networks. Social Networks, 74, 139-155.
https://doi.org/10.1016/j.socnet.2023.02.006

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Sep. 2023

https://doi.org/10.1016/j.socnet.2023.02.006
https://research.tilburguniversity.edu/en/publications/8354e6be-3fce-4caf-88f2-ba6f48d68400
https://doi.org/10.1016/j.socnet.2023.02.006


Social Networks 74 (2023) 139–155

A
0

Contents lists available at ScienceDirect

Social Networks

journal homepage: www.elsevier.com/locate/socnet

Separating the wheat from the chaff: Bayesian regularization in dynamic
social networks
Diana Karimova a,∗, Roger Th.A.J. Leenders b,c, Marlyne Meijerink-Bosman a, Joris Mulder a,b

a Department of Methodology and Statistics, Tilburg School of Social and Behavioral Sciences, Tilburg University, Netherlands
b Jheronimus Academy of Data Science, Netherlands
c Department of Organization Studies, Tilburg School of Social and Behavioral Sciences, Tilburg University, Netherlands

A R T I C L E I N F O

Keywords:
Bayesian regularization
Shrinkage priors
Bayesian lasso
Horseshoe prior
Relational event data

A B S T R A C T

In recent years there has been an increasing interest in the use of relational event models for dynamic social
network analysis. The basis of these models is the concept of an ‘‘event’’, defined as a triplet of time, sender, and
receiver of some social interaction. The key question that relational event models aim to answer is what drives
the pattern of social interactions among actors. Researchers often consider a very large number of predictors
in their studies (including exogenous effects, endogenous network effects, and interaction effects). However,
employing an excessive number of effects may lead to overfitting and inflated Type-I error rates. Moreover, the
fitted model can easily become overly complex and the implied social interaction behavior difficult to interpret.
A potential solution to this problem is to apply Bayesian regularization using shrinkage priors to recognize
which effects are truly nonzero (the ‘‘wheat’’) and which effects can be considered as (largely) irrelevant (the
‘‘chaff’’). In this paper, we propose Bayesian regularization methods for relational event models using four
different priors for both an actor and a dyad relational event model: a flat prior model with no shrinkage,
a ridge estimator with a normal prior, a Bayesian lasso with a Laplace prior, and a horseshoe prior. We
apply these regularization methods in three different empirical applications. The results reveal that Bayesian
regularization can be used to separate the wheat from the chaff in models with a large number of effects
by yielding considerably fewer significant effects, resulting in a more parsimonious description of the social
interaction behavior between actors in dynamic social networks, without sacrificing predictive performance.
1. Introduction

Relational event history data are becoming increasingly available,
partly due to increasing use of technology-supported interaction, such
as email, phone calls, online social networks (Twitter, Facebook, et
cetera), or sociometric badges. Relational event data encode who does
what with respect to whom at what point in time. Typically, relational
event data contain information of the exact timing (or order) of in-
teractions, who was the sender, who was the receiver, and, possibly,
what was the mode of communication (e.g., face-to-face or digital), the
sentiment (e.g., positive or negative), the content, et cetera. Addition-
ally, information about attributes of the involved actors is also often
available, for example gender, group memberships, or the hierarchical
position of an actor in an organization. Finally, information about
possible external influences to the event history, such as deadlines, the
start of new projects, or time-of day/day-of-week may be available. Due
to their high-resolution, relational event data can potentially greatly

∗ Correspondence to: Warandelaan 2, Tilburg, 5037 AB, Netherlands.
E-mail address: d.karimova@uvt.nl (D. Karimova).

support our understanding of complex interaction processes, of tempo-
ral effects of interventions in networks, or of how past interactions may
affect what will happen in the (nearby) future.

Relational event models (initially proposed by Butts (2008), and
later extended by DuBois et al. (2013), Quintane et al. (2014), Leenders
et al. (2016), Pilny et al. (2016), Vu et al. (2017), Stadtfeld et al.
(2017), Mulder and Leenders (2019) and Lerner and Lomi (2020),
among others) have become widely used over the past decade for
analyzing relational event data. In the relational event model, the
outcome variable is the rate of interaction between potential senders
and receivers in the network at a given point in time. This rate of
interaction is commonly assumed to be a log linear function of a set
of predictor variables (at that given point in time). Following Leenders
et al. (2016), predictor variables can be categorized as being endoge-
nous (ie., summarizing the past activity of the actors in the network)
or exogenous (ie., capturing actor attributes or external influences).
By modeling the interaction rate between actors, the relational event
vailable online 28 March 2023
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model can predict the next event: given the past interactions among
the actors and the characteristics of the actors, at a given point in time,
estimated rates predict who will be involved in the next interaction
(and when will it occur). In relational event models, this is achieved by
finding a loglinear combination of endogenous predictors, exogenous
predictors, and possible interactions that best (or, sufficiently) model
the rates of interaction of every event that is possible at a given time.
In additional to directly modeling the interaction rate between dyads,
actor relational event models are also available where we separately
model who is going to be the sender of the next event and who is likely
to become the receiver of the next event given this sender.

Building a model for social interaction is an inherently highly
complex and complicated endeavor. Although researchers may build
their model based on some theory or on previous findings, it is often
extremely complicated to put together the exact effects that are able to
not only capture who interacts with whom, but also correctly captures
the order and timing at which each event occurs vis-à-vis the others.
Just like with other statistical network models, such as (S)(T)ERGM’s
or SIENA-models, a well-fitting model usually requires active model
selection and variable selection by the researcher. Often, researchers
start with a set of predictors (inspired by theory or previous findings),
remove those that are not statistically significant and add new ones that
might improve accuracy further, until the researcher is satisfied with
the model fit. Considering that relational event models (especially as
the number of actors and the number of events grow) can take quite
some time to run, this is a potentially time-consuming approach (and
makes the interpretation of t -statistics questionable). Alternatively,
researchers may specify a set of potential models and compare their
performance based on measures such as AIC and BIC. Again, this can
be a time and resource-intensive approach. Moreover the final model
may depend on individual choices made by the researcher which may
be difficult to reproduce.

Variable selection algorithms have not yet been thoroughly de-
veloped for relational event models, but researchers have developed
some ways to help the variable selection process. For example, Butts
(2008) proposed a model for explaining radio communication messages
between emergency transponders during the 9/11 World Trade Center
disaster. To make decisions about which variables to include, Butts
(2008) utilized the BIC, a model selection criterion that balances model
fit and model complexity (via the number of predictor variables). In
most cases, however, it is not computationally feasible to compute
the BIC for all possible models since the number of possible models
to consider increases exponentially with the number of predictors 𝐾
via 2𝐾 . Therefore, this is generally not computationally feasible for
relational event models with many predictor variables. Hence, in prac-
tice researchers only compare a few competing models. This choice of
which models to compare is inherently somewhat arbitrary and may be
driven by computational burden (the longer it takes for a model to run,
the fewer models can feasibly be compared).

Another potential solution for variable selection problems exists in
a form of penalized or regularized regression. In penalized regression,
the optimization problem of finding the best fitting estimates for the
coefficients (say, by minimizing the sum of squared errors) is replaced
by a constrained optimization problem using a penalty with respect to
the total magnitude of all estimated coefficients. For example, in the
least absolute shrinkage and selection operator (lasso; Tibshirani, 1996),
the penalty function is equal to the sum of the absolute values of all of
the coefficients in the model, i.e., ∑𝑝 |𝛽𝑝|, and the following restricted
maximization problem needs to be solved:

maximize𝜷 {(𝑑𝑎𝑡𝑎|𝜷)} subject to
𝑃
∑

𝑝=1
|𝛽𝑝| ≤ 𝑡, (1)

where  is the likelihood of the data given the unknown parameters,
and 𝑡 can be viewed as the ‘‘budget’’ the model needs to stay within
140

(Hastie et al. (2016), 2016, Ch. 3). For example, when considering
two parameters, (𝛽1, 𝛽2) with unconstrained maximum likelihood esti-
mates of (.3, 2) and a budget of 𝑡 = 2, the estimates (0, 2) would be
acceptable and (.3, 2) would not be. In this small example, we obtain
a simpler solution with only one nonzero estimate instead of two
by applying penalized regression rather than standard regression. The
resulting, more parsimonious model thus highlights which effects really
matter, without the ‘‘clutter’’ of many effects that do not contribute
much statistically. So even though the solution (.3, 1.7) would also
fit within the ‘‘budget’’ of the penalty above, such solutions gener-
ally result in a smaller likelihood of the data (i.e., a worse fit) than
the more parsimonious solution (0, 2) where the large effect of 𝛽2 is
left unaffected. Of course, the lasso is only one kind of penalized
regression and many other penalty terms have been proposed in the
literature. In this paper, we will explore three ways of penalizing the
parameters in the relational model and show how they differ in which
estimates are shrunk towards zero and how strongly. Moreover, both
frequentist and Bayesian regularization approaches have been shown
to effectively guard against overfitting and to result in good predictive
performance (Tibshirani, 1996; Park and Casella, 2008; Kyung et al.,
2010; Van Erp et al., 2019). In this paper, we therefore contend that a
useful and statistically sound alternative to iterative model and variable
selection approaches is to specify a single large model (i.e. include all
potential predictors of interest, regardless of multicollinearity) and then
use regularization to separate the wheat from the chaff and end up with
a parsimonious model that is easier to interpret than the initial (much)
larger model.

In this paper, we introduce Bayesian regularization approaches for
relational event models. In Bayesian regularization, the prior distribu-
tion of the coefficients, 𝑝(𝜷), serves a similar purpose as the penalty
function in classical penalization methods. The prior reflects which val-
ues of the unknown parameters are likely or unlikely before observing
the data. Thus, if the prior is concentrated near zero, on average we
expect coefficients to be close to 0 a priori. This is a realistic assump-
tion when considering a relational event model with many predictor
variables of which many can potentially have a negligible effect (but
we may not know which ones, beforehand). Intuitively, such priors
will therefore shrink small, negligible effects towards zero yielding a
more parsimonious result. Moreover, if a prior is used with relatively
thick tails, large estimated effects will remain mostly unaffected by the
shrinkage behavior towards zero. As a result, small effects will vanish
(i.e. they are shrunk towards zero), while large effects are retained. This
is what we call to separate the wheat from the chaff (statistically).

In Bayesian regularization, statistical inferences are based on the
posterior distribution which is proportional to the product of the like-
lihood function and the prior:

𝑝(𝜷|𝑑𝑎𝑡𝑎) ∝ (𝑑𝑎𝑡𝑎|𝜷) × 𝑝(𝜷),

here 𝑝(𝜷|𝑑𝑎𝑡𝑎) is the posterior that reflects which values for 𝜷 are
ikely after observing the data. The posterior mode is then obtained via

aximize𝜷 {(𝑑𝑎𝑡𝑎|𝜷) × 𝑝(𝜷)} . (2)

s shown by Park and Casella (2008), a Bayesian counterpart to the
asso in (1) is obtained by using a prior with a Laplace distribution for
ach parameter, i.e., 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝛽𝑝|𝜆) = 𝜆∕2 exp(−𝜆|𝛽𝑝|), where 𝜆 denotes
penalty or shrinkage parameter, which has a similar role as the

udget 𝑡 in the regular lasso. Fig. 1 (dotted line) shows the Laplace
istribution with a clear peak at 0 and relatively thick tails. When using
he Laplace prior, it can be shown that the posterior mode is identical to
he solution of the lasso in standard penalized regression for a specific
hoice of 𝜆 and 𝑡. The Laplace prior as well as the other priors in this
igure will be discussed in more detail later in this paper.

The Bayesian approach to regularization has several attractive prop-
rties. First, it performs competitively and sometimes better than its
lassical counter parts (in terms of predictive mean squared error) and
esults in more accurate uncertainty bounds using the full posterior
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Fig. 1. Flat prior (dashed line), normal prior (dash-dotted line), Laplace prior (dotted line), and horseshoe prior (solid line).
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nstead of using bootstrapped standard errors in the regular lasso (Park
nd Casella, 2008). Second, Bayesian approaches are quite flexible
egarding the choice of the prior. Standard penalized regression, on the
ther hand, can be challenging to optimize when the target function
i.e., the combination of the likelihood function and the penalty func-
ion) is not convex (Hastie et al., 2015, p. 2). Third, in the Bayesian
pproach we can learn all model parameters (including the penalty
arameter 𝜆) in one step while regular penalized regression requires
wo-step procedures where the penalty parameter needs to be learned
n a second step using cross-validation where the data are split into
rbitrarily-sized subsets. On the other hand, Bayesian regularization
lgorithms are generally computationally more expensive than their
on-Bayesian counterpart. In this paper, we minimize the computa-
ional burden using so-called conjugate priors for which the conditional
osteriors have known probability distributions that we can sample
rom directly.

In this paper, we discuss the implementation of Bayesian regular-
zation algorithms and illustrate their use for both a dyadic and an
ctor relational event model. We use probit relational event models
which assume a normal latent scale) throughout the paper due to their
omputational benefit (they allow the shrinkage priors to be written
s scaled mixture of normal distributions). We present three empirical
elational event data sequences to illustrate Bayesian regularization: the
nron email data, the voice loops between actors during the infamous
pollo 13 mission to the moon, and a sequence of social interactions
etween team members based on proximity data. In Section 2 of
his paper we explain two partial likelihood approaches to relational
vent modeling: one for a dyadic relational events and one for actor
vents. In Section 3 we discuss the three alternative priors for Bayesian
egularization, and in Section 4 we illustrate the methodology with
hree empirical examples. We conclude and provide final discussions
n Section 5.

In sum, the aim of this paper is to show how relational event models
ith a large number of effects can be fitted and be regularized to a
ore parsimonious size, where statistically unimportant effects (i.e.

he ‘‘chaff’’) are shrunk to zero, while retaining the effects that are
tatistically important to the modem (i.e. the ‘‘wheat’’). The researcher
an use these methods even when the effects are highly collinear. The
mpirical illustrations show that this model reduction process need not
educe the predictive accuracy of the resulting, parsimonious model
ompared to the larger initial model and can sometimes even improve
141

t by reducing noise from the model. w
. Relational event modeling using partial likelihoods

The relational event model was popularized by Butts (2008), who
odeled a relational event history as a Poisson process where the

vent rate for each specific dyad depends on a set of endogenous and
xogenous effects through a loglinear function. Instead of working with
he full likelihood for a joint model for all event times, senders, and
eceivers, in this paper we adopt the idea of partial likelihoods (Cox,
972; Perry and Wolfe, 2013) that only considers specific parts of a
onditional likelihood. By working with partial likelihoods, we simplify
he specification of the model by focusing on the outcome variables that
re of most interest for a given application. Below, we first present a
artial likelihood for the actor model, based on Perry and Wolfe (2013)
nd Stadtfeld et al. (2017). This approach may be preferred when a
esearcher is interested in modeling the choice of the receiver of an
vent conditional on the sender (Vu et al., 2017; Stadtfeld and Block,
017; Hoffman et al., 2020; Hedström and Bearman, 2009). Second, we
rovide a partial likelihood for a dyadic relational event model. The
yadic REM directly models the dyad (i.e., the combination of sender
nd receiver) (Leenders et al., 2016; Brandes et al., 2009; Malang et al.,
019; Liang, 2014; Lerner and Lomi, 2018). For partial likelihoods we
onsider a probit regression model due to its Gaussian latent scale
hich, in combination with (conditional) Gaussian shrinkage priors

discussed in Section 3), results in a computationally efficient model
sing Markov chain Monte Carlo (MCMC) algorithms.

.1. A partial likelihood for an actor model

Using the notation of events 𝑒𝑚 = (𝑡𝑚, 𝑠𝑚, 𝑟𝑚), 𝑚 ∈ {1,… ,𝑀} as a
triplet of time 𝑡, sender 𝑠, and receiver 𝑟, we can write the likelihood
of the sequence of events as a product of conditional likelihoods:

𝐿(𝑒1,… , 𝑒𝑀 ) =𝐿(𝑒1)𝐿(𝑒2,… , 𝑒𝑀 |𝑒𝑒)

=𝐿(𝑒1)𝐿(𝑒2|𝑒1) ⋅… ⋅ 𝐿(𝑒𝑀 |𝑒1,… , 𝑒𝑀−1)

=𝐿(𝑡1, 𝑠1)𝐿(𝑟1|𝑡1, 𝑠1)𝐿(𝑡2, 𝑠2|𝑡1, 𝑠1, 𝑟1)𝐿(𝑟2|𝑡2, 𝑠2, 𝑒1) ⋅ ...⋅

⋅𝐿(𝑡𝑀 , 𝑠𝑀 |𝑒𝑀−1,… , 𝑒1)𝐿(𝑟𝑀 |𝑡𝑀 , 𝑠𝑀 , 𝑒𝑀−1,… , 𝑒1)

(3)

In an actor approach, the focus is on the choice of the receiver
or a given sender at a given point in time. In most research projects,
nderstanding who will be the receiver of an event for a given sender is
ore informative than modeling who will be the sender. In this paper

e therefore consider the following partial likelihood of the receivers
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of the events conditional on the senders and event times (following
directly from Eq. (3)):

𝑃𝐿(𝐫|𝐬, 𝐭) =𝐿(𝑟1|𝑡1, 𝑠1) ⋅ 𝐿(𝑟2|𝑡2, 𝑠2, 𝑒1) ⋅… ⋅ 𝐿(𝑟𝑀 |𝑡𝑀 , 𝑠𝑀 , 𝑒𝑀−1) (4)

The partial likelihood in (4) can be seen as a statistical choice model
where the sender ‘‘chooses’’ the most suitable receiver from the set of
possible receivers.

In this paper, we consider a Bayesian probit model using a Gaus-
sian latent variable approach by extending the work of Imai and
Van Dyk (2005) to relational event data. For each event 𝑒𝑖 in a se-
quence {𝑒1,… , 𝑒𝑀}, where M is a total number of events, we define a
categorical outcome variable 𝑌𝑖 that represents a receiver of the event
𝑒𝑖. This receiver of event 𝑖 can be any actor in the risk set 𝑎𝑐𝑡𝑜𝑟: the
set of actors who are possible receivers of a given event. As is common
in social network analysis, we assume that all actors, except for the
sender, are at risk. In a latent variable approach, this means that the
sender assigns a latent score to all potential receivers in the risk set.
We denote the latent score that sender 𝑖 assigns to potential receiver 𝑟
by 𝑍𝑖𝑟. The receiver 𝑟 with the largest score 𝑍𝑖𝑟 will be the predicted
receiver of the event:

𝑌𝑖(𝑍𝑖) = 𝑟, if max(𝑍𝑖) = 𝑍𝑖𝑟, (5)

where 𝑍𝑖 = (𝑍𝑖1,… , 𝑍𝑖𝑁 ) is a multivariate latent variable for 𝑁 actors.
In the framework of the multivariate probit model, we can write

𝑍𝑖 = 𝑋𝑖𝜷 + 𝜖𝑖, (6)

where 𝑋𝑖 is a 𝑁 × 𝑃 matrix of observed predictor variables at time 𝑖,
𝜷 = (𝛽1,… , 𝛽𝑃 )𝑇 is a vector of network parameters, and 𝜖𝑖 is a Gaussian
error term, centered at zero, having an identity covariance matrix
(to ensure identifiability of the model). The matrix 𝑋𝑖, 𝑖 = 1,… ,𝑀
of predictor variables can include endogenous as well as exogenous
predictors, defined for each actor in the risk set.

2.2. A partial likelihood for a dyadic model

Often, the interest is in jointly modeling the combination of sender
and receiver (Leenders et al., 2016; Brandes et al., 2009; Malang et al.,
2019; Liang, 2014; Lerner and Lomi, 2018). Thus, for a dyad model we
build a statistical model for all possible dyads that can be observed at
a given point in time. Starting from the full likelihood, but redefining
the conditional likelihood in such a way that we condition on the time
points of events, we get the following representation of the likelihood:

𝐿(𝑒1,… , 𝑒𝑀 ) =𝐿(𝑒1)𝐿(𝑒2,… , 𝑒𝑀 )

=𝐿(𝑒1)𝐿(𝑒2|𝑒1) ⋅… ⋅ 𝐿(𝑒𝑀 |𝑒1,… , 𝑒𝑀−1) = ⋯

=𝐿(𝑡1)𝐿(𝑠1, 𝑟1|𝑡1)𝐿(𝑡2|𝑡1, 𝑠1, 𝑟1)𝐿(𝑠2, 𝑟2|𝑡2, 𝑒1) ⋅ ...⋅

⋅𝐿(𝑡𝑀 |𝑒𝑀−1,… , 𝑒1)𝐿(𝑠𝑀 , 𝑟𝑀 |𝑡𝑀 , 𝑒𝑀−1,… , 𝑒1)

(7)

A partial likelihood for a dyad REM can then be written as follows:

𝑃𝐿(𝐬, 𝐫|𝐭) =𝐿(𝑠1, 𝑟1|𝑡1) ⋅ 𝐿(𝑠2, 𝑟2|𝑡2, 𝑒2) ⋅ ⋯ ⋅ 𝐿(𝑠𝑀 , 𝑟𝑀 |𝑡𝑀 , 𝑒𝑀−1) (8)

This can be viewed as a dyadic partial likelihood for the REM where
the sender and receiver for event 𝑒𝑖 are jointly modeled.

In contrast to the actor model, in the dyadic model the outcome
variable is the rate of the occurrence of a dyad. In particular, 𝑌𝑖 is
defined as an index of the dyad (𝑠, 𝑟) from the risk set 𝑑𝑦𝑎𝑑 of all the
𝑁(𝑁 − 1) possible ordered dyads. Following the idea of a multivariate
probit model, we assume that all dyads that are at risk lie on a latent
scale where the dyad with the largest latent score becomes the dyad
that is predicted to occur next:

𝑌𝑖(𝑊𝑖) = 𝑙(𝑠𝑖, 𝑟𝑖), if max(𝑊𝑖) = 𝑙(𝑠𝑖, 𝑟𝑖),

where 𝑙(𝑠𝑖, 𝑟𝑖) ∈ {1,… , 𝑁(𝑁 − 1)} is the index of dyad (𝑠𝑖, 𝑟𝑖) in the
ordered risk set 𝑑𝑦𝑎𝑑 . Therefore, the latent vectors 𝑊𝑖 have length
𝑁(𝑁 − 1), under the condition that an actor cannot send an event to
142
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oneself. Note that the dyadic relational event model can be computa-
tionally costly for large networks as there will be many unknown latent
variables to be estimated.

We write the regression for the dyad REM as follows:

𝑊𝑖 = 𝑋𝑖𝜷 + 𝜖𝑖, 𝑖 = 1,… ,𝑀 (9)

where matrices 𝑋𝑖 are of dimension 𝑁(𝑁−1)×𝑃 (containing the dyadic
predictor variables) and 𝜷 is the corresponding vector that quantifies
the relative importance of the predictors. As in the actor model, the
set of potentially important dyadic predictor variables is allowed to
be huge. To find the true nonzero effects, a Bayesian regularization
algorithm will be proposed, as discussed in the next section.

3. Bayesian regularization via shrinkage priors

A complete Bayesian model combines the statistical model for the
data with a prior distribution for the network parameters 𝜷1:

model ∶
{

𝑌𝑖(𝑍𝑖) = 𝑗, if max(𝑍𝑖) = 𝑍𝑖𝑗 ,
𝑍𝑖 = 𝑋𝑖𝜷 + 𝜖𝑖, with 𝜖𝑖 ∼ 𝑁(0, 𝐼)

prior ∶ 𝑝(𝜷)

Even though one might think that priors are only used for including
external information about the unknown parameters in the analysis
(e.g. based on expert knowledge or previous empirical findings), spe-
cific choices of the prior can also result in desirable shrinkage behavior
where negligible effects are shrunk towards zero while leaving large ef-
fects mostly unaffected. Such priors are often called ‘‘shrinkage priors’’.
Using such priors is useful for Bayesian regularization as they result
in more parsimonious models than when using noninformative priors
that do not induce any shrinkage behavior. To allow the same type of
shrinkage behavior for negative and positive effects, the prior should
have a symmetric form with a peak at zero (to shrink small effects)
while having sufficient probability mass allocated in the tails (to leave
large effects largely unaffected).

Different types of priors can be used for this purpose. For a re-
cent overview, see Van Erp et al. (2019). In the current paper, we
consider three of the most popular shrinkage priors from the Bayesian
regularization literature: a Gaussian (normal) prior (for Bayesian ridge
regression; Fig. 1, dashed–dotted line), a Laplace prior (for Bayesian
lasso regression; Fig. 1, peaked dotted line), and a horseshoe prior
(Fig. 1, sharply peaked solid line). We add a flat (horizontal) prior
(Fig. 1, dashed line) that does not perform any shrinkage (as it assumes
that all values of the parameters are equally likely a priori). The results
of the flat prior are comparable to the results from maximum likelihood
estimation, making it a suitable prior for a reference analysis. The
figure shows some intuition about the different shrinkage behavior of
the three different priors. For example, we see that the horseshoe prior
has the sharpest peak (in fact it has a pole at zero), followed by the
Laplace prior, and finally the normal prior has the smallest peak. This
suggests that the horseshoe prior results in heaviest shrinkage near
zero, while the normal prior results in the least shrinkage. Furthermore,
because the horseshoe prior has the thickest tails and the normal prior
has the thinnest tails, the horseshoe prior will leave large effects mostly
unaffected, followed by the Laplace prior, while the normal prior is
expected to also shrink large effects a bit towards zero.

In addition to the shape of the shrinkage priors, the variance (or
scale) of the prior also has a direct effect on the amount of shrinkage
in the model: a large (small) prior variance induces little (considerable)
shrinkage. This prior variance is controlled via the shrinkage parameter
and is denoted as 𝜆2. Ideally, when there are many large effects, the
shrinkage parameter should be large (so the large effects are left intact),
and when there are hardly any large effects, the shrinkage parameter

1 In this section we present the priors in the context of an actor model. The
riors for the dyadic model are mathematically equivalent.
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should be small (so the small effects are nudged towards zero). The
optimal value of the shrinkage parameter for a given data set can be
found using two-step approaches such as cross-validation or empirical
Bayes methods (e.g., Park and Casella, 2008). In a Bayesian frame-
work, however, it is a more natural choice to estimate the shrinkage
parameter jointly with the other parameters in one single step. This
does require one to specify a separate prior density for the shrinkage
parameter 𝜆2, we will discuss this later in this paper.

To fit the Bayesian regularized relational event models, we use
arkov Chain Monte Carlo (MCMC) methods to sample the param-

ters from the joint posterior. The approach is to sample the model
arameters sequentially from their conditional posterior distributions.
ibbs sampling is an efficient MCMC algorithm where the conditional
osterior distributions of the parameters belong to known distributional
amilies from which we can directly sample. This is the case when the
riors have the same distributional form as the likelihood (this is known
s ‘‘conjugacy’’). Because of the Gaussian distribution under the probit
odel in the partial likelihoods from Section 2, Gaussian priors for 𝜷

result in conditional posteriors that also have Gaussian distributions.
Interestingly, the Laplace prior and the horseshoe prior both can be
written as scaled mixtures of Gaussian priors making posterior sampling
in a Gibbs sampler straightforward and efficient. We use 𝐹 priors for the
shrinkage parameters as they are relatively vague while allowing easy
posterior sampling using Gamma and Inverse distributions (Mulder
et al., 2018). This is equivalent to choosing a half-Cauchy prior for 𝜆,
which is a common choice (Carvalho et al., 2009). In the next section,
we discuss each Bayesian shrinkage model for relational event analysis
in detail.

3.1. Flat prior (no shrinkage)

We first consider a benchmark model with no shrinkage effect. This
model utilizes a flat improper prior that assumes that all values for the
regression coefficients vector 𝜷 = (𝛽1,… , 𝛽𝑃 ) are equally likely a priori.
Mathematically, this can be written as

𝑝𝐹𝐿𝐴𝑇 (𝜷) ∝ 1, (10)

The prior density is constant over the complete real line (see the
dashed line in Fig. 1). The prior does not shrink the regression co-
efficients: the estimates of 𝜷 will be entirely driven by the data. The
Bayesian flat prior model, therefore, behaves very similar to classical
MLE estimation. Given an observed event history we can estimate the
posterior distribution of 𝜷 = (𝛽1,… , 𝛽𝑃 ). Because the latent variable has
a multivariate normal distribution, the model can be estimated using a
Gibbs sampler. We describe the Gibbs sampler algorithm in Appendix.
This algorithm can be used to acquire a large sample from the posterior
for all parameters, which can be used for statistical inference. For
example, by taking 2.5% and 97.5% posterior quantiles, we obtain the
bounds of the 95% Bayesian credibility interval. If zero is not contained
in the interval this suggests that the parameter should be included in
the model. To obtain a point estimate of each model parameter, we
use the posterior mode (which reflects the most plausible value of a
parameter after observing the data).

3.2. Bayesian ridge prior

Ridge regression was originally developed to improve estimates of
the classic least squares model, especially in the case when there is high
correlation among predictors. The model utilizes a modified variance
matrix 𝑋′𝑋 + 𝜆2𝐼 that adds a quadratic penalty. In Bayesian ridge
regression, a normal prior is used for the regression coefficients:

𝑝𝑅𝐼𝐷𝐺𝐸 (𝜷|𝜆2) =
𝑃
∏

𝑝=1
𝑝(𝛽𝑝|𝜆2) =

𝑃
∏

𝑝=1
 (𝛽𝑝|0, 𝜆2), (11)

where  (𝛽𝑝|0, 𝜆2) denotes a normal prior for 𝛽𝑝 with mean 0 and
variance 𝜆2.
143
We plot this prior in Fig. 1 using a dash-dotted line. The prior is
centered around zero with relatively thin tails. Shrinkage is performed
over the entire domain of parameters due to the structure of normal
prior density: large values will be shrunk to the same degree as are
small values.

To complete the Bayesian model, we need a prior for the shrinkage
parameter 𝜆2. A common prior for this purpose is the gamma distri-
bution (Park and Casella, 2008). However, the hyperparameters of the
gamma prior may considerably affect its results (Kyung et al., 2010).
For this reason, we use a half-Cauchy prior for 𝜆 instead, which is quite
vague due to its thick tails. A half-Cauchy prior for 𝜆 is equivalent to
an 𝐹 prior for 𝜆2 (e.g., Mulder et al., 2018), which has density:

𝐹 (𝜆2; 𝛼1, 𝛼2, 𝑏) =
𝛤 ( 𝛼1+𝛼22 )

𝛤 ( 𝛼12 )𝛤 ( 𝛼22 )
𝑏−𝛼2∕2

(

𝜆2

𝑏
+ 1

)− 𝛼1+𝛼2
2

(𝜆2)𝛼2∕2−1 (12)

e set the hyperparameters to 1, which is the default minimally
nformative choice:

2 ∼ 𝐹 (1, 1, 1)

Using a parameter expansion, the 𝐹 distribution can be written as
a scale mixture of inverse gamma distributions via

𝐹 (𝜆2|𝛼1, 𝛼2, 𝑏) = ∫ 𝐼𝐺(𝜆2| 𝛼22 , 𝛿)𝐺(𝛿|
𝛼1
2 , 𝑏)𝑑𝜓

2.

This makes the prior conditionally conjugate, making the MCMC al-
gorithm quite efficient. The Gibbs Sampler algorithm can be found in
Appendix.

3.3. Bayesian lasso prior

The classical lasso (‘‘least absolute shrinkage and selection opera-
tor’’) regression model uses a 𝐿1 norm as a penalty term, which is the
sum of the absolute values of the regression coefficients. The Bayesian
equivalent of the lasso penalty is obtained by using a Laplace prior for
regression coefficients (Park and Casella, 2008):

𝑝𝐿𝐴𝑆𝑆𝑂(𝜷|𝜆2) =
𝑃
∏

𝑝=1
𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝛽𝑝|𝜆2). (13)

To facilitate Bayesian computation, the Laplace prior can be written
s a normal distribution where the scale has an exponential distribu-
ion; this results in a conditionally conjugate Bayesian model:

𝑎𝑝𝑙𝑎𝑐𝑒(𝛽𝑝|𝜆2) = ∫  (𝛽𝑝|0, 𝜏2𝑝𝜆
2)𝐸𝑥𝑝(𝜏2𝑝 |1)𝑑𝜏𝑝,

or 𝑝 = 1,… , 𝑃 .
We plotted the Laplace prior as a dotted line in Fig. 1. As can

e seen, the prior is more peaked around zero with thicker tails in
omparison to the normal prior that is used for Bayesian ridge re-
ression. As will be shown later, this results in stronger shrinkage of
mall estimated effects and, due to the Laplace prior having thicker tails
han the normal prior, this results in less shrinkage of larger estimated
ffects.

Compared to the normal (ridge) prior, the lasso prior includes the
arameter 𝜏2𝑝 ; this serves as a shrinkage parameter on a local level
or effect 𝛽𝑝 and varies across the 𝛽𝑝. The 𝜆2 parameter, on the other
and, controls global shrinkage and affects all 𝛽𝑝 to the same degree.
he idea of a separate global and a local shrinkage parameter was

ntroduced by Carvalho et al. (2009) and allows a researcher to control
he shrinkage behavior of the method precisely. To complete the model,
e again set a vague 𝐹 prior for the global shrinkage parameter:

2 ∼ 𝐹 (1, 1, 1).

he Gibbs sampler can be found in Appendix.
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3.4. Bayesian horseshoe prior

The horseshoe model was first introduced in Carvalho et al. (2010)
and has an asymptote at zero combined with heavy tails. To construct
this prior, the original model proposes to use a half-Cauchy distribution
(i.e., a Student 𝑡 distribution with 1 degree of freedom). This results in
eavier shrinkage of small effects and less shrinkage of large effects
ompared to the Bayesian lasso. The prior can be written as follows:

𝐻𝑂𝑅𝑆𝐸𝑆𝐻𝑂𝐸 (𝜷|𝜆2) =
𝑃
∏

𝑝=1
𝐻𝑜𝑟𝑠𝑒𝑠ℎ𝑜𝑒(𝛽𝑝|𝜆2), (14)

where 𝜆2 is a global shrinkage parameter. Again, to facilitate Bayesian
computation the horseshoe prior is written as a scaled mixture of
normals where 𝜆2 follows an 𝐹 distribution:

𝑜𝑟𝑠𝑒𝑠ℎ𝑜𝑒(𝛽𝑝|𝜆2) = ∫  (𝛽𝑝|0, 𝜆2𝜏2𝑝 )𝐹 (𝜏
2
𝑝 |1, 1, 1)𝑑𝜏

2
𝑝 ,

or 𝑝 = 1,… , 𝑃 .
A graphical representation of the horseshoe prior is given in Fig. 1

y the solid line. It is clear that the prior has a sharp peak at zero
nd has quite heavy tails. The name ‘‘horseshoe’’ comes from the
bservation that the shrinkage coefficient 𝜅𝑝, defined as 𝜅𝑝 = 1∕(1+𝜏2𝑝 ),
as a horseshoe-shaped 𝐵𝑒𝑡𝑎(1∕2, 1∕2) distribution under the matrix-
prior for 𝜏𝑝. This coefficient reflects the amount of weight that the

osterior places around zero: 𝜅𝑝 ≈ 0 (or 𝜏2𝑝 very large) corresponds to
o shrinkage whereas 𝜅𝑝 ≈ 1 (or 𝜏2𝑝 ≈ 0) corresponds to total shrinkage
o zero.

Similar to the Bayesian lasso prior, 𝜏2𝑝 serves as a local shrinkage
arameter for 𝛽𝑝, while 𝜆2 serves as a global shrinkage parameter.
n contrast to the Bayesian lasso, the local shrinkage parameters now
ollows an 𝐹 distribution instead of an exponential distribution. As the

distribution has thicker tails than the exponential in case of Bayesian
asso, the 𝐹 prior will result in less shrinkage of large effects than the
asso model. The parameter 𝜆2 optimizes the overall level of sparsity,
hile the local shrinkage parameters 𝜏2𝑝 prevent large effects from being

hrunk towards zero. Again, we finalize the Bayesian horseshoe model
y setting a vague 𝐹 prior on the global shrinkage parameter:
2 ∼ 𝐹 (1, 1, 1).

he Gibbs sampler for fitting the model is described in Appendix.

.5. A simple illustration of different shrinkage behaviors

In order to illustrate the shrinkage effect of the four models, we
stimate the shrinkage models on relational event sequences of fixed
ength across increasing effect sizes. For this illustration we consider
he actor model (but the shrinkage behavior is similar for the dyadic
odel). We create event sequences with different effect sizes by prop-

rly specifying the design matrix X. For example, consider a sequence
f 30 relational events on a network of six actors, assuming a scalar
etwork parameter 𝛽 and a single predictor variable that is zero for all
ctors except for actor 2 (for whom it is equal to 0.2) for all events in
he sequence (𝑖 ∈ {1,… , 30}): 𝑋′

𝑖 = (0, 0.2, 0, 0, 0, 0). Here we consider
situation where all events are sent by Actor 1. The number of actors
ho receive an event from actor 1 decreases across the sequences as

hown in Table 1. In Sequence 1 all events are sent proportionally to
ll actors 2, 3, …, 6. In the last Sequence 29 all events but one (to avoid
dentification issues) are sent to actor 2.

By construction, in these relational event sequences the effect size
f 𝛽 is smallest for the Sequence 1, grows gradually, and reaches
ts maximum for the Sequence 29. This data structure allows a clear
omparison of the different shrinkage priors. The objective of this
xample is to check the amount and the shape of the shrinkage that
he ridge, lasso, and horseshoe priors impose on a network effect. For
larity of exposition, we fix the shrinkage parameter 𝜆2 to 1 for all
144

odels. p
Table 1
Sequences of events with the allocation of the receivers. All senders are fixed to Actor
1. Receivers in Sequence 1 are distributed equally, in Sequence 29 all the receivers are
Actor 2.

Event Sending Receiver Receiver Receiver Receiver
index actor Sequence 1 Sequence 2 Sequence 3 ⋯ Sequence 29

1 1 2 2 2 2
2 1 3 2 2 2
3 1 4 4 2 2
4 1 5 5 5 2
5 1 6 6 6 2
6 1 2 2 2 2
7 1 3 3 3 2
8 1 4 4 4 2
9 1 5 5 5 2
10 1 6 6 6 2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
29 1 5 5 5 2
30 1 6 6 6 6

We estimate the network effect for each of the 29 relational event
sequences with the actor model and show the resulting posterior means
in Fig. 2. The left panel shows the estimate 𝛽 across Sequences 1 to
29. The right panel shows the difference between the estimate under
the unregularized model (using the flat prior) and those under each
regularized model (using the different shrinkage priors). The estimate
based on the flat prior model, which serves as a reference, increases
over the sequence index as expected. The ridge model shows an ap-
proximately linear trend, heavily shrinking moderate to large effects.
The lasso model shrinks small effects a bit more than the ridge prior
and yields estimates that are approximately parallel to those of the flat
model. The horseshoe shows most shrinkage for small effect sizes and
the least shrinkage for larger effects where it gradually converges to
the flat prior model. Note that if a larger value would be specified for
the penalty parameter 𝜆 (which captures the scale of the prior), the
nduced shrinkage behavior would be rescaled to also shrink larger
ffects. Next, we explore how the shrinkage prior models perform
n empirical settings where the penalty parameter is specified as an
nknown parameter which is jointly estimated (or ‘‘optimized’’) with
he other parameters depending on the data at hand.

. Empirical data applications

In this section we apply the Bayesian regularization algorithms to
hree empirical datasets. The goal of these studies is to explore whether
he regularized relational event models result in more parsimonious
odels (i.e., fewer significant effects) while maintaining a good (or

ven better) predictive performance in comparison to an unregularized
odel. First we consider a relational event sequence based on the Enron

orporate email data: the choice of the next receiver in this relational
vent sequence is analyzed using actor models with shrinkage priors.
econd, we consider a sequence of communication from the infamous
pollo 13 mission to the moon. Third, we analyze undirected interac-

ions between team members using the Wearable Sensors dataset. These
atter two datasets are analyzed using dyadic relational event models.
ach predictor variable in each relational event model is scaled to have
mean of 0 and a standard deviation of 1.

The estimation is performed using R code which is available at https:
/github.com/DianaKarim/bs. Based on the posterior distribution, we
onstruct 95% credible intervals and evaluate the significance of the
articular effect by checking whether that interval covers zero. Addi-
ionally, to obtain point estimates we look at the posterior mode of the
ffects based on the sample from the conditional posterior densities.
sing these results, we can show that the shrinkage models result in
any fewer significant coefficients compared to the flat prior model,
hich induces no shrinkage.

The performance of the fitted models is assessed using the posterior

redictive distribution (Gelman et al., 2013), using the posterior modes

https://github.com/DianaKarim/bs
https://github.com/DianaKarim/bs
https://github.com/DianaKarim/bs
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as point estimates. Posterior predictive distributions make use of the
complete posterior of the parameters by using the posterior draws as
plausible realizations of the unknown parameters, and thus take the
uncertainty of the model parameters into account. Using the posterior
predictive distribution, we can evaluate the performance of the fitted
model by comparing the events predicted by the model with the events
that actually occurred. By looking at the predictive performance we
can learn whether the Bayesian shrinkage models provide a more
parsimonious description of the interaction behavior in the networks
without sacrificing predictive performance.

To evaluate the predictive power of the fitted models, we use the
latent variables 𝑍𝑑𝑟𝑎𝑤

𝑖 = 𝑋𝑖𝜷𝑑𝑟𝑎𝑤 that are calculated on the sampled
alues 𝜷𝑑𝑟𝑎𝑤 generated by the Gibbs sampler. Each component of the

vector 𝑍𝑑𝑟𝑎𝑤
𝑖 corresponds to an actor (or dyad) from the ordered risk

set. Higher values imply a larger probability of a corresponding actor
to be the next receiver (or the dyad to transpire next in the case of dyad
model). Thus, we can compare the event that actually occurred with the
set of ‘‘best predicted events’’, i.e. sorted values of the latent variable
𝑍𝑑𝑟𝑎𝑤
𝑖 , for each event in the sequence 𝑒𝑖, 𝑖 ∈ 1,… ,𝑀 . Below, we

consider how often events with the highest 𝑍𝑑𝑟𝑎𝑤
𝑖 component appears in

the set of 5%, 10%, or 20% of the highest scoring events. Similarly, the
prediction power is also calculated using the posterior mode estimates
by using the vector 𝜷𝑝𝑜𝑠𝑡.𝑚𝑜𝑑𝑒 instead of 𝜷𝑑𝑟𝑎𝑤. Both in-sample as well
as out-of-sample predictive performance is explored using the above
methods. For the out-of-sample predictions, the posterior is based
solely on the training sample (i.e. the ‘‘in-sample’’) but the endogenous
statistics are updated in the test sample (i.e. the ‘‘out-of-sample’’) based
on the actually observed events in this period. For example, in the case
of a training sample of 2000 events, and a test sample of the next 500
events, the posterior of the coefficients is solely based on the first 2000
events but the endogenous statistics are updated in the following 500
events, e.g. the endogenous statistics to predict the 2002nd event are
based on the 1st until the 2001st event.

4.1. Bayesian regularization of an actor REM with directed relational events

4.1.1. Enron email data
To demonstrate the performance of the actor oriented shrinkage

models, we use publicly available data of the Enron corpus from the
repository of Carnegie Mellon University. These data contain the time-
stamped emails of 156 users, mostly senior management of Enron
Corporation, a former American energy, commodities, and services
company. The data were made public in 2001 after Enron Corporation
declared bankruptcy and the following public investigation. These data
have been widely used in different fields from social network research
to computer science (Keila and Skillicorn, 2005; Diesner et al., 2005;
Wilson and Banzhaf, 2009; Peterson et al., 2011), and have already
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been analyzed in the context of relational events in Perry and Wolfe c
Table 2
Dichotomous variables indicating whether the actor works in the Legal department,
trading department, is a junior, or is female.

Variable Characteristics of actor i

L(i) Member of the Legal department
T(i) Member of the Trading department
J(i) Seniority is Junior
F(i) Gender is Female

(2013) using maximum likelihood estimation with no shrinkage. We
consider the dataset compiled by Zhou et al. (2007) which consists
of 21,635 messages in total (data retrieved from https://github.com/
patperry/interaction-proc). The original data span a long time period
(1998.11 - 2002.6) and record the tumultuous dynamics of Enron,
from glory to collapse, declaring bankruptcy in December 2001. It is
very unlikely that the drivers of the social dynamics in the company
remained unchanged over this 3.5 year period. Because our interest is
in illustrating the effect of regularization methods, rather than showing
how to build a relational event model that fits the changing dynamics
inside Enron over this entire period, we consider a sample consisting
of the first 2000 events in the year of 2001 (assuming that effects
will be reasonably stable for this period), where we split the multicast
messages into multiple dyadic observations (for more direct approaches
to model multicast messages see Perry and Wolfe (2013), Lerner et al.
(2021), or Mulder and Hoff (2021)). The subset that we use in this
application can also be found on the github page (link suppressed for
blind review). The time interval of this subset is 37 days. The events
that happened before the start of the subset are considered in the
computation of the endogenous statistics.

The data also contain information about several actor traits, such
as the actors’ gender (male or female), department (Legal or Trading),
and seniority (Junior or Senior). We use these actor traits to model
homophily (when both sender and receiver belong to the same group)
and cross-group effects (when sender and receiver come from different
groups). We do this by including interaction variables 𝑋(𝑖) ∗ 𝑌 (𝑖),
where 𝑋 indicates that a sender belongs to group 𝑋, and 𝑌 indicates
that a receiver belongs to group 𝑌 , while 𝑋 and 𝑌 come from the set of
dichotomous actor dependent attributes (𝐿, 𝑇 , 𝐽 , 𝐹 ) – see Table 2 for the
overview. Hence, the interaction variable 𝐿(𝑖) ∗ 𝐿(𝑖) is 1 if sender and
eceiver are both members of the Legal department and 0 otherwise.
he interaction variable 𝐿(𝑖) ∗ 𝐹 (𝑖) is 1 if the sender is a member of the

egal department and the receiver is female. Such interactions can allow
researcher to estimate the effects of combinations of social categories
n interaction tendencies inside Enron.

To summarize the past activity between actors in the network,
e include six endogenous network effects in our analysis that are

ommonly used in relational event models (e.g. Leenders et al., 2016).

https://github.com/patperry/interaction-proc
https://github.com/patperry/interaction-proc
https://github.com/patperry/interaction-proc
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Table 3
Predictive performance of the four flat prior model, the Bayesian ridge, the Bayesian lasso, and the horseshoe (HS) prior model for the Enron email data. The results reflect the
percentages of observed events that belong to the top 5%, the top 10%, and the top 20% of most likely events based on the estimated model using the full posterior or the
posterior modes for making predictions. In each category, the best result is displayed in bold.

In-sample 5% 10% 20%

Flat Ridge Lasso HS Flat Ridge Lasso HS Flat Ridge Lasso HS

Full post. 76.3 76.6 76.5 76.5 83.2 83.4 83.2 83.1 88.3 88.6 88.5 88.4
Post. modes 75.9 76.7 76.6 76.3 83.0 83.7 83.2 82.8 87.8 88.7 88.5 88.4

Out-of-sample 5% 10% 20%

Flat Ridge Lasso HS Flat Ridge Lasso HS Flat Ridge Lasso HS

Full post. 79.1 79.2 79.3 79.3 84.9 85.2 85.3 85.3 90.8 91.1 91.0 91.1
Post. modes 79.0 79.4 79.2 79.0 84.2 85.7 85.0 85.0 90.3 91.6 91.3 91.6
First, we included inertia (I), which quantifies the tendency of an actor
to keep sending emails to an actor as a function the volume of emails
sent by this sender to this same receiver in the past: the more emails
𝑠 has sent to 𝑟 in the past, the higher is the expected future rate of 𝑠
sending to 𝑟. Second, we include reciprocity (R), which quantifies the
tendency of an actor to send messages to another actor as a function
of the number of messages that this sender received from that actor
in the past: the more emails 𝑟 has sent to 𝑠 in the past, the higher is
the expected future rate of 𝑠 sending to 𝑟. In addition, we included
receiver’s indegree and outdegree, also referred to as popularity (P)
and activity (A), which quantify the tendency to receive messages as
a function of the number of messages received from everybody in the
network and the tendency to receive messages as a function of the
number of sent messages in the past, respectively: this captures the
effect that past popular receivers (regardless of who was the sender) are
likely future receivers (for any sender) and that very active senders are
likely future receivers. Lastly, higher level triadic effects were added
to the model, such as outgoing two-paths (OTP), incoming two-paths
(ITP), outgoing shared partners (OSP), and incoming shared partners
(ISP). Furthermore, to account for a possible memory decay where
recently observed emails may have a greater impact on what happens
next than emails that were exchanged longer ago, we calculated all
six the endogenous effects listed above based on the events that were
observed within intervals of 1 day, 2 days, 1 week, 2 weeks, 1 month,
and 3 months (for more elaborate memory decay models for relational
event data see also Arena et al. and Perry and Wolfe (2013)). In total,
this results in a relational event model consisting of 64 effects.

4.1.2. Results
We estimated the model (for each of the priors) using the Gibbs

sampler algorithms described in Appendix with 10,000 iterations as
a burn-in period followed by a total of 100,000 iterations, where
only every tenth iteration is recorded (to eliminate the effect of au-
tocorrelation in the posterior draws). We plot the estimated posterior
distributions and 95% credible intervals in Fig. 3. As expected, the flat
prior model with no shrinkage behavior returns the largest number
of significant predictors: 27 in total. The shrinkage models result in
24 (Bayesian ridge), 22 (Bayesian lasso), and 18 (horseshoe) signifi-
cant predictors, respectively. Thus, we see a considerable drop in the
number of significant effects, especially for the horseshoe model.

It is informative to inspect the posterior intervals in Fig. 3. First,
consider the cases where the unregularized model (with the flat prior)
results in an interval where zero is just barely excluded: this represents
either a potentially large effect with much posterior uncertainty (i.e., a
wide interval) or a smaller effect with a narrow interval. In these
cases, a regularized model generally shifts the interval towards zero,
resulting in a non-significant effect.2 For example, we can see this for

2 Using a larger confidence level, e.g., 99%, would still result in more
ignificant effects than when using shrinkage models. We come back to this in
he Discussion.
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the endogenous popularity effect (P) in the 2 weeks period and the 1
month period. For the exogenous effects, we see some similar shrinkage
behavior when both the sender and receiver are from the trading
department (TT) and when the sender is a junior and the receiver is
from the trading department (JT).

Another informative observation is that the regularized models gen-
erally result in narrower intervals, implying higher posterior certainty.
This is a preferred behavior when fitting a large model with many
potential predictor variables that induces much uncertainty. From a
Bayesian perspective this behavior is expected as the posterior com-
bines the information in the prior with the information in the data,
and thus, if an informative prior is used (as we do here), there will be
less posterior uncertainty than when this prior information is excluded.

Table 3 reports the predictive performance of the four models. Using
the full posterior and using the posterior modes, we calculated the esti-
mated rates and then calculated whether the actually transpired event
was in the top 5%, top 10%, or top 20% of the estimated/predicted
rates. We did this both for in-sample predictions (i.e. we predicted
each next event within the observation period)and out-of-sample pre-
dictions for the next 500 events in the sequence. Overall the predictive
performance of the models is quite good. The prediction scores also
support our hypothesis that shrinkage models attain a comparable or
better predictive power while eliminating a considerable number of
non-significant effects. Note that the performance for the out-of-sample
predictions is a bit higher than the performance for the in-sample
predictions. This is somewhat surprising as out-of-sample predictions
are more challenging. This could be explained by temporal changes
of interaction behavior which is more likely to occur over longer
observational periods. In our situation, the data for training the models
consisted of 2000 events, and thus the interaction behavior is more
likely to change in this longer observational period than the out-of-
sample sequence which consisted of only 500 events. The interaction
behavior in the out-of-sample observational period may have been
approximately constant, and possibly close to the average behavior in
the longer observational period of the training sample.

4.2. Bayesian regularization of a dyadic REM with directed relational
events

4.2.1. Voice loops during the Apollo mission
We analyze the recorded voice loops from NASA’s infamous Apollo

13 mission. The data were retrieved from http://apollo13realtime.org/
and consist of recorded voice messages of the members of the Com-
mand and Service Module (CSM) Odyssey and the Lunar Module (LM)
Aquarius. The data consist of the Flight directors’ voice loop and the air-
ground’s voice loop: Flight directors (Houston’s Mission Control Center)
were located in Houston and the crew (astronauts) were connected
to this control center via Capsule Communicator (CAPCOM). In the
original data only the senders of the messages were recorded. We added
the receivers manually based on the content of the text messages.

In total, the event sequence includes 5498 messages within an
observational period of six hours. Around the beginning of this period

http://apollo13realtime.org/
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Fig. 3. Posterior modes and 95% credible intervals for all 64 effects estimated in the Enron email data with the flat, ridge, lasso, and horseshoe models. For clarity of exposition, the
results are organized across separate panels, but the model was run with all effects together. Black and gray error-bars refer to significant and non-significant effects, respectively.
The flat, ridge, lasso, and horseshoe prior model result in 27, 24, 22, and 18 significant effects, respectively. The abbreviations denote inertia (I), reciprocity (R), activity (A),
popularity (P), law (L) and trading department (T), junior (J), female (F). The interactions are labeled as TT (sender and receiver both belong to the trading department), FT
(sender is female, the receiver is in the trading department), et cetera.
an explosion occurred that damaged the oxygen tanks, followed by
the rapid decrease of the oxygen levels and fluctuations in electrical
power and control thrusters in the Lunar module (characterized by
the famous quote ‘‘Houston, we’ve had a problem’’). It is highly likely
that the communication patterns before the incident (when the mission
was still in ‘‘routine’’ mode) were drastically different from those after
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the incident (where the mission jumped into survival and problem-
solving). To avoid the drastic changes in the parameters of the data in
the middle of our observation period, we focus on the events after the
incident for the analysis in this paper and removed the first 96 events
from the dataset. This resulted in 5402 events, starting from the point
when the problem was reported, until the successful splashdown. We
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Table 4
Predictive performance of the four flat prior model, the Bayesian ridge, the Bayesian lasso, and the horseshoe (HS) prior model on the Apollo communication data. The results
reflect the percentages of observed events that belong to the top 5%, the top 10%, and the top 20% of most likely events based on the estimated model using the full posterior
or the posterior modes for making predictions. In each category, the best result is displayed in bold.

In-sample 5% 10% 20%

Flat Ridge Lasso HS Flat Ridge Lasso HS Flat Ridge Lasso HS

Full post. 88.8 88.8 88.9 88.9 96.9 96.9 96.9 96.9 99.4 99.3 99.3 99.3
Post. modes 87.2 88.5 89.0 84.3 96.9 97.0 96.8 93.5 99.4 99.3 99.3 98.9

Out-of-sample 5% 10% 20%

Flat Ridge Lasso HS Flat Ridge Lasso HS Flat Ridge Lasso HS

Full post. 92.7 92.7 92.8 92.9 97.7 97.7 97.8 97.8 99.5 99.3 99.4 99.4
Post. modes 90.0 91.6 92.8 84.4 97.6 97.8 98.0 93.6 99.4 99.2 99.2 99.4
leave the last 500 events out to evaluate the out-of-sample predictive
performance of the models (resulting in a total of 4902 events that are
used for model fitting).

In these relational event data, certain actors are substantively more
active than other actors. This can be explained by the fact that strict
protocols of communication had to be followed during the mission: only
one actor (CAPCOM) was allowed to talk to the crew in the Lunar
Module, while the main flight director (FLIGHT) was coordinating
the team at the command and Service Module. As a result of these
communication rules, around 40% of messages were sent by FLIGHT,
36% of the messages were received by FLIGHT, 13% of messages
were sent by CAPCOM, 18% messages were received by CAPCOM. We
adapted the risk set such that only those dyads were at risk that were
allowed by the mission’s protocols.

We specified a dyadic relational event model with twelve en-
dogenous statistics: recency ranks of sender and receiver (rrankSnd,
rrankRec), participation shifts (psABBA, psABBY, psABXA, psABAY),
inertia (I), reciprocity (R), outdegree of sender (ODSnd), indegree of
receiver (IDRec), and transitive closure effects of outgoing and incom-
ing two-paths (otp and itp)–see Butts (2008) for their mathematical
definitions. Further, we assigned each actor a general role: CAPCOM,
FLIGHT, actors in the Lunar Module (Air), and the remaining actors on
the ground (Ground). Because of the idiosyncratic role of each actor in
this communication network, it is likely that communication behavior
differs between different types of actors. We therefore interact each of
the twelve endogenous variable with the eight role combinations (Air
to air, Ground to CAPCOM, Air to CAPCOM, CAPCOM to ground, CAP-
COM to air, ground to FLIGHT, FLIGHT to ground)–this allows to assess
whether reciprocity is higher for actors in the lunar module (Air to Air)
than for ground personnel (Ground–Ground) or communication from
ground personnel to the CAPCOM, et cetera. Excluding the Ground–
Ground fixed effect (for identifiability), this yields a relational event
model with 103 network effects.

4.2.2. Results
We estimated the four models using the Gibbs sampler algorithms

described in Appendix with 10,000 iterations in burn-in period and
total 100,000 iterations, where only every tenth iteration is stored. We
plot the estimated posterior modes and 95% credible intervals in Figs. 4
and 5. Of the 103 effects in total, the flat prior model, the Bayesian
ridge model, the Bayesian lasso model, and the horseshoe prior model
identified 62, 54, 53, and 45 significant effects, respectively, illustrating
the impact of shrinkage algorithms to obtain more parsimonious model.

There are interesting patterns to be observed from these plots. For
example, we see that otp is mostly significant based on the flat prior
model but always never significant for the shrinkage models (with an
acceptance of air-to-CAPCOM, which is the other way around). The
point estimates are often practically equal to zero for the horseshoe
model. Substantively, the results show a highly protocolized interac-
tion pattern. In particular, it is clear that interaction between ground
personnel (Ground–Ground) happens quite differently from the other
interaction. The ground personnel was busy trying to come up with
solutions that could be passed on to the crew in the air, which required
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a lot of going back-and-forth between them. As a result, for these
interactions there are positive and significant effects for psABBA and
psABBY (illustrating that the receiver of a message tends to immedi-
ately respond to it to the sender of the message or to immediately send
a message on to another member of the ground team). Similarly, the
development of discussions between the ground crew is shown by the
significance of the recency effects rrankSnd and rrankRec (i.e. both the
most recent senders and the most recent receivers tend to soon send
a next message soon). Together, this is illustrative of a team that is
frantically trying to make sense of the problem and find a solution to
it. These statistics are rarely positive and significant for the interactions
between other roles.

All models clearly show that interaction rates tend to be high
among the ground crew and between the air crew and the CAPCOM.
The flat model also flags CAPCOM-to-Ground and communication be-
tween Ground and FLIGHT as enhancing communication rates, but the
horseshoe model shrinks all of these effects to zero, pointing to a role-
based interaction dynamic that is governed by the problem-solving
communication by the ground crew and the exchange of information
about what is going on inside the capsule between the air crew and the
CAPCOM.

Overall, the figures again show that the intervals tend to be nar-
rower for the regularized models than for the unregularized model
(with some exceptions).

Table 4 shows the results of the in-sample and out-of-sample predic-
tive performance of the four models. Again we see a pattern where the
models perform quite similarly. Overall, all models show good predic-
tive performance. It is interesting that the predictive performance of the
horseshoe model is somewhat lower when predicting events solely on
the posterior modes, and thereby ignoring posterior uncertainty. This
suggests that the use of the full posterior for making predictions would
be advised for these data. Finally, note that the out-of-sample predictive
performance is again a bit higher for all models than the in-sample
predictive performance. This could be explained by the fact that the
training sequence, which consists of 4902 events, is considerably larger
than the testing sequence, which consists of 500 events, making the
training sequence more difficult to predict in case of changes in the
interaction behavior which are likely in longer observational periods.

4.3. Bayesian regularization of a dyadic REM with undirected relational
events

4.3.1. Interactions between team members using proximity data
In the third empirical application, we analyze undirected interac-

tions between members of a research team. The data were collected
by Müller et al. (2018) with the aim to develop new tools and methods
for doing research into the impact of gender diversity in Research &
Development teams. Members of eight research teams wore sociometric
badges that recorded close-range proximity between participants with
Bluetooth sensors. Here, we analyze the proximity data of ‘team 4’,
a team in the field of biomedical engineering in a public research
center. The team consists of nine members: one team leader, two senior
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Fig. 4. Posterior modes and 95% credible interval for 51 effects estimated in the Apollo 13 mission data with the flat, ridge, lasso, and horseshoe prior model for Ground to
ground, Air to air, Ground to CAPCOM, and Air to CAPCOM channels. Black and gray error-bars refer to significant and non-significant effects, respectively. The flat, ridge, lasso,
and horseshoe prior model result in 33, 28, 28, and 24 significant effects, respectively.
researchers, four Ph.D.-students, one research assistant, and one master
student.

The proximity contacts between the nine team members were
recorded for five days. Since differences in interaction dynamics can
be expected across different days of the week (Amati et al., 2019), we
chose to focus on the contacts of the second day of the observation
period. In total, 2653 proximity contacts between the team members
were detected on the second day of observation. The 2896 contacts
on the first day of the observation period are included in the history
of events used to train the endogenous statistics. In addition to the
proximity data, team members filled out a questionnaire reporting on
their social and advice-seeking relationships with their fellow team
members. The team members rated each other in a round-robin design
on the questions ‘I spend time socially with this person outside the
lab/office’ (1 = never, 2 = some times a year, 3 = some times a month,
4 = some times a week, 5 = daily) and ‘I consult this person for work
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related advice’ (1 = never, 2 = rarely, 3 = sometimes, 4 = very often,
5 = always). Furthermore, we have information on the team members
sex (five females, four males), educational level (three doctorate, four
masters or postgraduate, one completed secondary education, and one
bachelors), age (mean is 37 years, standard deviation is 9 years), and
tenure (mean is 55 months, standard deviation is 35 months).

For these data, we estimate a dyadic relational event model. Since
the proximity contacts are undirected, the risk set consists of 36 undi-
rected pairs of team members. We include four endogenous network
effects in our model: ‘‘degree’’ (D) (i.e., the total number of past
interactions that any of the actors in the pair had with any of the other
team members), ‘‘inertia’’ (I) (i.e., the number of past contacts between
the actors in the pair), ‘‘recency’’ (R) (i.e., the time since the last contact
between the actors in the pair), and ‘‘shared partners’’ (SP) (i.e., the
number of past contacts with a third actor that both actors in the pair

had been in contact with). In addition to the endogenous predictors,
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Fig. 5. Posterior modes and 95% credible interval for 52 effects estimated in the Apollo 13 mission data with the flat, ridge, lasso, and horseshoe prior model for CAPCOM to
ground, CAPCOM to air, Ground to FLIGHT, and FLIGHT to ground channels. Black and gray error-bars refer to significant and non-significant effects, respectively. The flat, ridge,
lasso and horseshoe prior model result in 29, 26, 25, and 21 significant effects, respectively.
we add eight exogenous predictor variables to our model. The ‘‘social
average’’ (SA) variable describes the average of the rating the pair gave
each other on the question about their social relationship, the ‘‘social
difference’’ (SD) variable describes the absolute difference in the rating
the pair gave each other on this question. Similarly, the ‘‘advice seeking
average’’ (ASA) variable describes the average of the rating the pair
gave each other on the question about their advice seeking relationship,
the ‘‘advice seeking difference’’ (ASD) variable describes the absolute
difference in the rating the pair gave each other on this question. The
‘‘age difference’’ (AD) variable describes the absolute difference in the
age of the actors in the pair. The ‘‘tenure difference’’ (TD) variable
describes the absolute difference in the tenure of the actors in the pair.
The ‘‘same sex’’ (SS) variable is 1 if both actors in the pair have the
same sex and 0 otherwise, and ‘‘same education’’ (SE) is 1 if both actors
in the pair have the same educational level and 0 otherwise. Finally,
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we add all the interactions between the four endogenous predictors
and eight endogenous predictors to our model. In total, we have 44
predictor variables in our model. All predictor variables in the model
were standardized prior to the analysis.

4.3.2. Results
We estimated the four models on the ‘team 4’ data using the Gibbs

samplers described in Section 2 with 10 000 iterations as a burn-in
period followed by a total of 100 000 iterations, where only every tenth
iteration is recorded. Fig. 6 shows the estimated posterior modes and
95% credible intervals. From Fig. 6, we can clearly observe the impact
of the shrinkage models compared to the flat model: For most effects,
the posterior mode is closer to zero for the models with shrinkage priors
than for the model with a flat prior and, in general, the 95% credible
interval of the posterior distribution is smaller for the shrinkage prior
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Fig. 6. Posterior modes and 95% credible interval for the 44 effects estimated in the ‘‘team4’’ data with the flat, ridge, lasso and horseshoe prior model. Black and gray error-bars
efer to significant and non-significant effects, respectively. The flat, ridge, lasso and horseshoe prior model result in 25, 17, 14, and 8 significant effects, respectively.
odels than for the flat prior model. Based on the 95% credible
ntervals, we can conclude that the number of significant predictors
educes from 25 in the flat prior model, to 17 in the ridge model, 14
n the lasso model and 8 in the horseshoe prior model.

The results (Fig. 6) show that the models with shrinkage priors yield
ore parsimonious models for the event rate than the model with the

lat prior. As an example of how this affects the interpretation, we
ocus on the total degree effect in the upper left panel of Fig. 6 and
he interactions between this degree effect and the exogenous effects
n the middle left panel of Fig. 6. As shown in the upper left panel of
ig. 6, the model with the flat prior finds a strong, positive effect for
he total degree of the dyad members on the event rate. Thus, pairs of
eam members who were (summed together) more active in the past,
re more likely to interact again than pairs of team members who were
ointly less active in the past. As shown in the middle left panel of Fig. 6,
esults from the model with flat prior indicate that this effect of degree
n the event rate is stronger for pairs with team members that have
higher average advice seeking relationship. Furthermore, the model
ith flat prior finds that the effect of degree on the event rate is smaller
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for pairs with team members of the same sex, team members that differ
more in age, team members that have the same level of education,
and team members that have a higher average social relationship with
each other. Results from the models with shrinkage priors suggest a
much simpler model. Taking the results from the horseshoe prior as an
example, the model also finds a positive effect for the total degree of
the dyad members on the event rate, but much less strongly so. Also,
the effect of degree on the event rate decreases for pairs who have the
same level of education (SE) and for pairs who differ more in age (AD).
Compared to the flat prior model, the horseshoe prior model yields no
significant interaction effects between degree (D) and same sex (SS),
average advice seeking relationship (ASD) and average rating of their
social relationship (SA).

Table 5 shows the in-sample and out-of-sample prediction scores for
the Team 4 data. For out-of-sample prediction, the first 500 events for
the third (i.e., the next) day were predicted. Results in Table 5 show
that the in-sample prediction scores for the four models are very similar
based on the full posteriors. All four models correctly predict around
11% of the 2653 observed proximity in the top 5% predicted events,
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Table 5
Predictive performance of the four flat prior model, the Bayesian ridge, the Bayesian lasso, and the horseshoe (HS) prior model on the proximity data of Team 4. The results
reflect the percentages of observed events that belong to the top 5%, the top 10%, and the top 20% of most likely events based on the estimated model using the full posterior
or the posterior modes for making predictions. In each category, the best result is displayed in bold.

In-sample 5% 10% 20%

Flat Ridge Lasso HS Flat Ridge Lasso HS Flat Ridge Lasso HS

Full post. 10.8 10.8 10.8 10.8 27.8 27.2 27.4 27.2 54.7 54.1 54.1 54.2
Post. modes 8.2 9.8 10.7 10.3 25.8 27.9 26.5 26.6 52.4 54.7 52.9 52.3

Out-of-sample 5% 10% 20%

Flat Ridge Lasso HS Flat Ridge Lasso HS Flat Ridge Lasso HS

Full post. 2.7 2.6 2.6 2.6 5.4 5.1 5.1 5.3 16.8 15.5 16.2 18.4
post. modes 2.2 2.6 2.6 2.6 2.6 6.6 4.0 7.6 16.6 12.8 19.6 18.0
around 27%–28% in the top 10% predicted events, and around 54%–
55% in the top 20% predicted events. Even though the shrinkage priors
resulted in fewer significant effects and in posterior modes closer to
zero, the in-sample prediction performance of these models is similar
to that of the flat prior model. The table also shows that all four models
predict around 3% of the 500 events on the next day to be in the top 5%
predicted events, and around 5% in the top 10% predicted events. Note
that the lower out-of-sample performance suggests that the interaction
dynamics in the network of team members was likely quite different
on the next day. Because the model predicts the next events based on
the fitted parameters of the interactions on day 2, it does so for day 3
based on values that are not in line with that day’s social dynamics. In
conclusion, the results of the predictive performance indicate that the
full posterior, which takes posterior uncertainty into account, generally
results in the best predictions. Furthermore, all four methods show
comparable performance results on average. As before, regularization
yields more parsimonious results, while generally retaining model fit
and predictive accuracy.

5. Discussion

The temporal dynamics of relational event networks is governed by
a large variety of (complex) effects such as endogenous network effects,
exogenous effects, as well as interaction effects between them. There is
no single and common formulation of the relational event model that
can exactly explain who interacts with whom in what order and at
what time. Similarly, there is no theory that suffices to formulate such
a model. Due to the complexity of the phenomenon, it is only logical
that relational event models with a decent fit can be quite complex
themselves. And if modeling high-resolution temporal human interac-
tion patterns were not complex enough, this complexity is even further
exacerbated when exogenous attributes change (e.g., when the actors
move to a different organizational department or when their mood
changes), when there are cycles in interaction patterns (e.g., when time-
of-day or time-of-week matters), when outside influences play a role
(e.g., the start of a new project, holiday time, the arrival of a new
manager, an explosion in the lunar capsule during the Apollo 13 mis-
sion) or the composition of the network changes (some members leave
the organization–permanently or just for a while due to sickness–and
others join)–all of these influences are quite common when studying
real life events. With or without any of these increasingly complexity
situations, modeling temporal social interaction behavior in a network,
while achieving good and consistent model fit, can easily lead to
relational event models with a large number of predictors. Further,
it is important to acknowledge that the endogenous network effects
can be highly collinear: for example, strong reciprocity gives rise to
high inertia. Each single network effect may be (and typically is) a
component of multiple effects and many event sequences of interest
are related by a ‘‘parent-descendant’’ relation (e.g., reciprocity may
solidify two-paths, two-paths are antecedents of three-cycles and other
kind of triadic structures, et cetera). As a result, effects may correlate
highly with one another and interpretation of model results becomes
quite complicated when many effects are included in the model that
152
have intricate mutual dependencies with each other. Therefore, we
contend, there is a need for (statistical) algorithms that can separate
the wheat from the chaff and can recognize the true nonzero effects
(for the dataset and model at hand). This results in more parsimonious
relational event models that are easier to interpret and may even have
better predictive performance than models obtained using standard
statistical methods such as maximum likelihood estimation.

As shown in this paper, Bayesian shrinkage models form an effective
solution to this problem. The proposed methods result in considerably
fewer significant effects and less posterior uncertainty (due to narrower
interval estimates) without sacrificing predictive performance of the
fitted models. This was shown for a variety of relational event models
including an actor model for directed observations, a dyadic model for
directed observations, and a dyadic model for undirected observations.
By considering relational event data of different natures, including
email messages between colleagues in a large organization, radio com-
munication messages during the infamous Apollo mission, and physical
proximity data between colleagues in a small team, we illustrated that
the methodology can be quite generally applied to relational event data
of different kinds.

We refrain from suggesting which specific regularization technique
(i.e., which shrinkage prior) should be used in general as different em-
pirical analyses can require different shrinkage behavior to optimally
balance between model parsimony and predictive performance. For this
reason, we plotted the priors explicitly in Fig. 1, so a researcher can
guide this choice based on the type of regularization that is preferred in
a specific research project. Alternatively, researchers may well choose
to apply all three methods, i.e., the Bayesian ridge, the Bayesian lasso,
and the horseshoe prior model, and use the results to determine which
is most suitable for the research at hand by investigating predictive
performance and the (number of) significant effects in the result-
ing models. If a researcher has a clear preference for a maximally
parsimonious model while maintaining good predictive performance,
we recommend using the horseshoe prior model and to use the full
posterior to do predictions.

The work on (Bayesian) regularization of relational event models is
still in its infant stages. Our intent has been to illustrate its promise
and to provide researchers with the tools to apply the state-of-the-
art models in their own research (the appropriate R code is available
at github page; link suppressed for blind review). There are many
ways in which this research can be extended. One direction is to not
shrink all parameters in the model according to the same regime, but
to distinguish between types of parameters by using different penalty
parameters for different subsets of the effects. The group lasso (Kyung
et al., 2010), for instance, can be used for this purpose. For instance,
one could penalize the endogenous effects, the exogenous effects, and,
possibly the interaction effects differently. Or, in a network of em-
ployees in an organization, one could apply different levels/regimes
of penalization on within-department effects than between-department
effects. A related extension would be to use different types of shrinkage
priors for different types of parameters (e.g., dyadic effects, triadic
effects, degree, etc.). One set of parameters could then be shrunk
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according to a lasso and another set of parameters would be shrunk
according to a horseshoe prior.

Shrinkage priors may also prove useful when modeling network
effects that may change over time. When the parameter is approxi-
mately constant over time, the difference is shrunk to zero such that the
estimated parameter remains constant. If the parameter does change,
e.g., due to a switch in interaction regime between the actors, no
shrinkage should be applied and we would be able to identify a change
of the interaction regime in the network (see also Shafiee Kamalabad
and Grzegorczyk, 2020, for such decoupling techniques).

Another interesting topic for further exploration is to optimize the
width of the credible intervals that are used to flag parameters as
significant, based on the data at hand (e.g., Liu et al., 2020). Finally, the
exploration of additional shrinkage priors (e.g., the Bayesian elastic net,
or spike-and-slab priors; Van Erp et al. (2019)) as well as the applica-
tion of shrinkage priors to other kinds of relational event models, such
as the Cox model, will be important extensions of the current work.

In the meantime, the methods we presented in this paper enable a
researcher to include all effects that might be relevant in explaining the
relational event hierarchy, even when they are highly collinear (as is
often the case in large network models), and then use these methods
to recognize which effects really matter statistically and which are
effectively zero. This makes the model more interpretable and increases
the confidence a researcher can have in the results, since the effects
that remain after regularization can be seen as indeed meaningful
to the relational event model. This can help save a researcher from
erroneously applying significance to noise and unimportant factors, but
rather focus interpretation of the effects that matter. Hopefully, this can
assist in developing deeper and more robust insight into the drivers of
social dynamics in networks.
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Appendix. Gibbs samplers

Fitting a Bayesian relational event model using a noninformative, flat prior
The Gibbs sampling algorithm has the following steps

1. Set initial values for 𝜷(0), and 𝑍(0).
2. Given 𝑍(𝑠−1), draw 𝜷(𝑠) from its conditional posterior distribution

that follows the multivariate normal distribution:

𝜷(𝑠)|𝑍(𝑠−1) ∼ 𝑁(𝜇𝛽 , 𝛴𝛽 ),where

𝜇𝛽 =

( 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑋𝑖

)−1 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑍

(𝑠−1)
𝑖 , 𝛴𝛽 =

( 𝑁
∑

𝑖=1
𝑋𝑇
𝑖 𝑋𝑖

)−1

3. Given 𝜷(𝑠), draw 𝑍(𝑠)
𝑖𝑟 from its conditional posterior distribution

that follows the truncated normal distribution:

𝑍(𝑠)
𝑖 |𝜷(𝑠) ∼ 𝑡 (𝑋𝑖𝜷(𝑠), 𝐼𝑁 ).

To reduce the degrees of freedom when choosing the latent
variables, the first component of each 𝑍𝑖 is fixed to zero. The
value of the element of 𝑍𝑖 that corresponds to the observed
actor is generated from a truncated density on the interval
(max𝑟≠𝑟𝑖 𝑍𝑖𝑟,∞). Alternatively, the values of the elements that
correspond to actors that are not observed are generated from
the truncated density on the opposite interval (−∞, 𝑍𝑖𝑟𝑖 ). This
way we can guarantee that latent variables resemble the given
relational event data.

4. Repeat steps 2 and 3 for 𝑠 = 1,… , 𝑆.

The initial set of draws is discarded as they are part of the burn-in
153

eriod and would depend on the arbitrarily chosen initial values.
Fitting a Bayesian relational event model with a normal prior (Bayesian
ridge regression)

The Gibbs sampling algorithm has the following steps

1. Set initial values for 𝜷(0), and 𝑍(0), as well as for parameters 𝜆2(0),
𝛿(0).

2. Draw 𝜷(𝑠) from its conditional posterior distribution given 𝑍(𝑠−1),

𝜷(𝑠)|𝑍(𝑠−1) ∼  (𝜇𝑟𝑖𝑑𝑔𝑒, 𝛴𝑟𝑖𝑑𝑔𝑒), where

𝜇𝑟𝑖𝑑𝑔𝑒 =

( 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑋𝑖 +

1
𝜆2
𝐼𝑃

)−1 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑍

(𝑠−1)
𝑖

𝛴𝑟𝑖𝑑𝑔𝑒 =

( 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑋𝑖 +

1
𝜆2(𝑠−1)

𝐼𝑃

)−1

3. Draw 𝑍(𝑠)
𝑖𝑟 from its conditional posterior given 𝜷(𝑠), which is a

truncated normal distribution.

𝑍(𝑠)
|𝜷(𝑠) ∼ 𝑡 (𝑋𝑖𝜷(𝑠), 𝐼𝑁 )

To ensure that the sampled values of the latent variables cor-
respond to the given data and satisfy Eq. (5), we sample latent
variables in the following way: first element of each vector 𝑍𝑖 is
set to zero to reduce degrees of freedom; the element that corre-
sponds to the observed actor is sampled from a truncated normal
density on the interval (max𝑟≠𝑟𝑖 𝑍𝑖𝑟,∞); and the elements which
correspond to non-observed actors are sampled from truncated
density on the complement interval (−∞, 𝑍𝑖𝑟𝑖 ).

4. Draw the shrinkage parameter 𝜆2 and the expanded parameter
𝛿:

𝜆2(𝑠)|𝜷(𝑠), 𝛿(𝑠−1) ∼ IG(𝛼1 +
𝑃
2
, 𝛿(𝑠−1) + 1

2

𝑃
∑

𝑝=1
(𝛽(𝑠)𝑝 )2)

𝛿(𝑠)|𝜆2(𝑠) ∼ G(𝛼1 + 𝛼2,
1
𝜆2(𝑠)

+ 1
𝑏
)

5. Repeat steps 2 to 4 for 𝑠 = 1,… , 𝑆.

Fitting a Bayesian relational event model with a Laplace prior (the Bayesian
lasso)

The steps in the Gibbs sampler are as follows:

1. Set initial values for 𝜷(0), 𝑍(0), 𝜆2(0), 𝜏2(0)1 ,… , 𝜏2(0)𝑃 , 𝛿(0)

2. Draw 𝜷(𝑠) from its conditional posterior distribution given 𝑍(𝑠−1),
𝜏2(𝑠−1)1 ,… , 𝜏2(𝑠−1)𝑃 , 𝜆2(𝑠−1)

𝜷(𝑠)|𝑍(𝑠−1), 𝜏2(𝑠−1)1 ,… , 𝜏2(𝑠−1)𝑃 , 𝜆2(𝑠−1) ∼  (𝜇𝑙𝑎𝑠𝑠𝑜, 𝛴𝑙𝑎𝑠𝑠𝑜), where

𝜇𝑙𝑎𝑠𝑠𝑜 =

( 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑋𝑖 +𝐷−1

𝜏

)−1 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑍

(𝑠−1)
𝑖

𝛴𝑙𝑎𝑠𝑠𝑜 =

( 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑋𝑖 +𝐷−1

𝜏

)−1

,

𝐷𝜏 = 𝑑𝑖𝑎𝑔{𝜆2(𝑠−1)𝜏2(𝑠−1)1 ,… , 𝜆2(𝑠−1)𝜏2(𝑠−1)𝑃 }

3. Update latent variables by sampling 𝑍(𝑠)
𝑖𝑟 from its conditional

posterior given 𝜷(𝑠), which is a truncated normal distribution,
such that

𝑍(𝑠)
|𝜷(𝑠) ∼ 𝑡 (𝑋𝑖𝜷(𝑠), 𝐼𝑁 ).

and for an element of 𝑍𝑖 that corresponds to the observed
actor the truncated interval is (max𝑟≠𝑟𝑖 𝑍𝑖𝑟,∞) while elements
that conform the actors that are not observed are truncated
in the interval (−∞, 𝑍𝑖𝑟𝑖 ). These conditions will guarantee that
sampled latent variables fit the observed categorical data and
according to Eq. (5). In addition, the first element of each 𝑍𝑖 is
fixed to zero, such that there are less degrees of freedom in the
generating process.
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4. Draw the value of parameter 𝝉2(𝑠) = (𝜏2(𝑠)1 ,… , 𝜏2(𝑠)𝑃 ) from its con-
ditional posterior distribution, which in this case is an inverse-
Gaussian distribution:

1
𝜏2(𝑠)𝑝

|𝛽(𝑠−1)𝑝 , 𝜆2(𝑠−1) ∼ Inv-Gauss(𝜇′ =
√

𝜆2(𝑠−1)

𝛽2(𝑠−1)𝑝

, 𝜆′ = 1), 𝑝 = 1,… , 𝑃

5. Update the values of 𝜆2(𝑠) (similarly to the step 4 for the ridge
model):

𝜆2(𝑠)|𝜏2(𝑠−1)1 ,… , 𝜏2(𝑠−1)𝑃 , 𝛿(𝑠−1) ∼ 𝐼𝐺(𝛼1 +
𝑃
2
, 𝛿 + 1

2

𝑃
∑

𝑝=1

𝛽2𝑝
𝜏2𝑝

)

𝑝(𝛿(𝑠)|𝜆2(𝑠−1)) ∝ 𝐺(𝛼1 + 𝛼2,
1

𝜆2(𝑠−1)
+ 1
𝑏
)

6. Repeat steps 2 to 5 for 𝑠 = 1,… , 𝑆.

itting a Bayesian relational event model with the horseshoe prior
The Gibbs sampling algorithm has the following steps:

1. Set initial values for 𝜷(0), 𝑍(0),𝝀2(0) = (𝜏2(0)1 ,… , 𝜏2(0)𝑃 ), 𝜆2(0), and
mixing parameters of the 𝐹 densities: 𝝍𝟐(𝟎) = (𝜓2(0)

1 ,… , 𝜓2(0)
𝑃 ),

𝛾2(0).
2. Draw 𝜷(𝑠) from its conditional posterior distribution given 𝑍(𝑠−1),
𝝉2(𝑠−1), 𝜆2(𝑠−1)

𝜷(𝑠)|𝑍(𝑠−1), 𝝉2(𝑠−1), 𝜆2(𝑠) ∼  (𝜇ℎ𝑜𝑟𝑠𝑒𝑠ℎ𝑜𝑒, 𝛴ℎ𝑜𝑟𝑠𝑒𝑠ℎ𝑜𝑒), where

𝜇ℎ𝑜𝑟𝑠𝑒𝑠ℎ𝑜𝑒 =

( 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑋𝑖 +𝐷−1

𝜏

)−1 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑍

(𝑠−1)
𝑖

𝛴ℎ𝑜𝑟𝑠𝑒𝑠ℎ𝑜𝑒 =

( 𝑀
∑

𝑖=1
𝑋𝑇
𝑖 𝑋𝑖 +𝐷−1

𝜏

)−1

,

𝐷𝜏 = 𝑑𝑖𝑎𝑔{𝜆2(𝑠−1)𝜏2(𝑠−1)1 ,… , 𝜆2(𝑠−1)𝜏2(𝑠−1)𝑃 }

3. Draw the values of latent variables by sampling 𝑍(𝑠)
𝑖𝑟 from con-

ditional posterior given 𝜷(𝑠), which is a truncated normal distri-
bution

𝑍(𝑠)
|𝜷(𝑠) ∼ 𝑡 (𝑋𝑖𝜷(𝑠), 𝐼𝑁 ).

under the conditions that for an observed element of 𝑍𝑖 the
truncated interval is (max𝑟≠𝑟𝑖 𝑍𝑖𝑟,∞) and for elements that are
not observed the truncated interval is (−∞, 𝑍𝑖𝑟𝑖 ), while the first
element of 𝑍𝑖 is always set to zero. Such conditions form latent
variables that correspond to the observed categorical data by the
definition of Eq. (5).

4. Draw the value of parameter 𝝉2(𝑠) from its conditional posterior-
inverse gamma distribution

𝜏2(𝑠)𝑝 |𝜓2(𝑠−1)
𝑝 , 𝜆2(𝑠−1), 𝛽(𝑠)𝑝 ∼ IG

(

𝛼3 +
1
2
, 𝜓2(𝑠−1)

𝑝 +
𝛽2(𝑠)𝑝

2𝜆2(𝑠−1)

)

, 𝑝 = 1,… , 𝑃

5. Draw the value of parameter 𝜆2(𝑠) from its conditional posterior-
inverse gamma distribution

𝜆2(𝑠)|𝛾2(𝑠−1), 𝝉2(𝑠), 𝜷(𝑠) ∼ IG
(

𝛼1 +
𝑃
2
, 𝛾2(𝑠−1) + 1

2

𝑃
∑

𝑝=1

𝛽2(𝑠)𝑝

𝜏2(𝑠)𝑝

)

6. Update the mixing parameters 𝝍𝟐(𝒔) and 𝛾2(𝑠) ∶

𝛾2(𝑠)|𝜆2(𝑠) ∼ G
(

𝛼1 + 𝛼2,
1
𝑏1

+ 1
𝜆2(𝑠)

)

𝜓𝑠(𝑠)𝑝 |𝜏2(𝑠)𝑝 ∼ G
(

𝛼3 + 𝛼4,
1
𝑏2

+ 1
𝜏2(𝑠)𝑝

)

, 𝑝 = 1,… , 𝑃

7. Repeat steps 2 to 6 for 𝑠 = 1,… , 𝑆.
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