427 research outputs found

    Simplicial Quantum Gravity on a Randomly Triangulated Sphere

    Get PDF
    We study 2D quantum gravity on spherical topologies employing the Regge calculus approach with the dl/l measure. Instead of the normally used fixed non-regular triangulation we study random triangulations which are generated by the standard Voronoi-Delaunay procedure. For each system size we average the results over four different realizations of the random lattices. We compare both types of triangulations quantitatively and investigate how the difference in the expectation value of the squared curvature, R2R^2, for fixed and random triangulations depends on the lattice size and the surface area A. We try to measure the string susceptibility exponents through finite-size scaling analyses of the expectation value of an added R2R^2-interaction term, using two conceptually quite different procedures. The approach, where an ultraviolet cut-off is held fixed in the scaling limit, is found to be plagued with inconsistencies, as has already previously been pointed out by us. In a conceptually different approach, where the area A is held fixed, these problems are not present. We find the string susceptibility exponent γstr\gamma_{str}' in rough agreement with theoretical predictions for the sphere, whereas the estimate for γstr\gamma_{str} appears to be too negative. However, our results are hampered by the presence of severe finite-size corrections to scaling, which lead to systematic uncertainties well above our statistical errors. We feel that the present methods of estimating the string susceptibilities by finite-size scaling studies are not accurate enough to serve as testing grounds to decide about a success or failure of quantum Regge calculus.Comment: LaTex, 29 pages, including 9 figure

    Volume fluctuations and geometrical constraints in granular packs

    Get PDF
    Structural organization and correlations are studied in very large packings of equally sized acrylic spheres, reconstructed in three-dimensions by means of X-ray computed tomography. A novel technique, devised to analyze correlations among more than two spheres, shows that the structural organization can be conveniently studied in terms of a space-filling packing of irregular tetrahedra. The study of the volume distribution of such tetrahedra reveals an exponential decay in the region of large volumes; a behavior that is in very good quantitative agreement with theoretical prediction. I argue that the system's structure can be described as constituted of two phases: 1) an `unconstrained' phase which freely shares the volume; 2) a `constrained' phase which assumes configurations accordingly with the geometrical constraints imposed by the condition of non-overlapping between spheres and mechanical stability. The granular system exploits heterogeneity maximizing freedom and entropy while constraining mechanical stability.Comment: 5 pages, 4 figure

    New insight into cataract formation -- enhanced stability through mutual attraction

    Get PDF
    Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and non-monotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.Comment: 4 pages, 4 figures. Accepted for publication on Phys. Rev. Let

    Identification of structure in condensed matter with the topological cluster classification

    Full text link
    We describe the topological cluster classification (TCC) algorithm. The TCC detects local structures with bond topologies similar to isolated clusters which minimise the potential energy for a number of monatomic and binary simple liquids with m13m\leq13 particles. We detail a modified Voronoi bond detection method that optimizes the cluster detection. The method to identify each cluster is outlined, and a test example of Lennard-Jones liquid and crystal phases is considered and critically examined.Comment: 28 pages, 28 figure

    New Monte Carlo method for planar Poisson-Voronoi cells

    Full text link
    By a new Monte Carlo algorithm we evaluate the sidedness probability p_n of a planar Poisson-Voronoi cell in the range 3 \leq n \leq 1600. The algorithm is developed on the basis of earlier theoretical work; it exploits, in particular, the known asymptotic behavior of p_n as n\to\infty. Our p_n values all have between four and six significant digits. Accurate n dependent averages, second moments, and variances are obtained for the cell area and the cell perimeter. The numerical large n behavior of these quantities is analyzed in terms of asymptotic power series in 1/n. Snapshots are shown of typical occurrences of extremely rare events implicating cells of up to n=1600 sides embedded in an ordinary Poisson-Voronoi diagram. We reveal and discuss the characteristic features of such many-sided cells and their immediate environment. Their relevance for observable properties is stressed.Comment: 35 pages including 10 figures and 4 table

    Gravitational Wilson Loop and Large Scale Curvature

    Full text link
    In a quantum theory of gravity the gravitational Wilson loop, defined as a suitable quantum average of a parallel transport operator around a large near-planar loop, provides important information about the large-scale curvature properties of the geometry. Here we shows that such properties can be systematically computed in the strong coupling limit of lattice regularized quantum gravity, by performing a local average over rotations, using an assumed near-uniform measure in group space. We then relate the resulting quantum averages to an expected semi-classical form valid for macroscopic observers, which leads to an identification of the gravitational correlation length appearing in the Wilson loop with an observed large-scale curvature. Our results suggest that strongly coupled gravity leads to a positively curved (De Sitter-like) quantum ground state, implying a positive effective cosmological constant at large distances.Comment: 22 pages, 6 figure

    Asymptotic statistics of the n-sided planar Voronoi cell: II. Heuristics

    Full text link
    We develop a set of heuristic arguments to explain several results on planar Poisson-Voronoi tessellations that were derived earlier at the cost of considerable mathematical effort. The results concern Voronoi cells having a large number n of sides. The arguments start from an entropy balance applied to the arrangement of n neighbors around a central cell. It is followed by a simplified evaluation of the phase space integral for the probability p_n that an arbitrary cell be n-sided. The limitations of the arguments are indicated. As a new application we calculate the expected number of Gabriel (or full) neighbors of an n-sided cell in the large-n limit.Comment: 22 pages, 10 figure

    The perimeter of large planar Voronoi cells: a double-stranded random walk

    Full text link
    Let p_np\_n be the probability for a planar Poisson-Voronoi cell to have exactly nn sides. We construct the asymptotic expansion of logp_n\log p\_n up to terms that vanish as nn\to\infty. We show that {\it two independent biased random walks} executed by the polar angle determine the trajectory of the cell perimeter. We find the limit distribution of (i) the angle between two successive vertex vectors, and (ii) the one between two successive perimeter segments. We obtain the probability law for the perimeter's long wavelength deviations from circularity. We prove Lewis' law and show that it has coefficient 1/4.Comment: Slightly extended version; journal reference adde

    Asymptotic statistics of the n-sided planar Poisson-Voronoi cell. I. Exact results

    Full text link
    We achieve a detailed understanding of the nn-sided planar Poisson-Voronoi cell in the limit of large nn. Let p_n{p}\_n be the probability for a cell to have nn sides. We construct the asymptotic expansion of logp_n\log {p}\_n up to terms that vanish as nn\to\infty. We obtain the statistics of the lengths of the perimeter segments and of the angles between adjoining segments: to leading order as nn\to\infty, and after appropriate scaling, these become independent random variables whose laws we determine; and to next order in 1/n1/n they have nontrivial long range correlations whose expressions we provide. The nn-sided cell tends towards a circle of radius (n/4\pi\lambda)^{\half}, where λ\lambda is the cell density; hence Lewis' law for the average area A_nA\_n of the nn-sided cell behaves as A_ncn/λA\_n \simeq cn/\lambda with c=1/4c=1/4. For nn\to\infty the cell perimeter, expressed as a function R(ϕ)R(\phi) of the polar angle ϕ\phi, satisfies d2R/dϕ2=F(ϕ)d^2 R/d\phi^2 = F(\phi), where FF is known Gaussian noise; we deduce from it the probability law for the perimeter's long wavelength deviations from circularity. Many other quantities related to the asymptotic cell shape become accessible to calculation.Comment: 54 pages, 3 figure

    Triceps Insufficiency After Total Elbow Arthroplasty:A Systematic Review.

    Get PDF
    Copyright © 2021 by The Journal of Bone and Joint Surgery, Incorporated.BACKGROUND: The incidence of triceps insufficiency after total elbow arthroplasty (TEA) varies in the literature, and a consensus on treatment strategy is lacking. We review the incidence, the risk factors, the clinical presentation, and the diagnosis and treatment of triceps insufficiency after TEA. Based on this information, we have formulated recommendations for clinical practice. METHODS: We performed a systematic review of the literature from January 2003 to April 2020 to identify studies that investigated triceps function following TEA by searching the PubMed, Cochrane, and Embase databases. Eligible studies (1) reported on triceps function following primary or revision TEA for every indication, regardless of technique (e.g., bone grafts), (2) included ≥6 adult patients, (3) had the full-text article available, and (4) had a minimum follow-up of 1 year. RESULTS: Eighty studies with a total of 4,825 TEAs were included. The quality was low in 15 studies, moderate in 64 studies, and high in 1 study. The mean incidence of triceps insufficiency was 4.5%. The rates were highest in patients after revision TEA (22%), in those with posttraumatic arthritis as an indication for surgery (10.2%), and after a triceps-reflecting approach (4.9%). Most studies used the Medical Research Council scale to score triceps function, although cutoff points and the definition of triceps insufficiency differed among studies. Surgical treatment showed favorable results with anconeus tendon transfer and Achilles allograft repair when compared with direct repair. CONCLUSIONS: The incidence of triceps insufficiency varies greatly, probably due to a lack of consensus on the definition of the term. Therefore, we recommend the guidelines for clinical practice that are presented in this article. These guidelines assist clinicians in providing the best possible treatment strategy for their patients and help researchers optimize their future study designs in order to compare outcomes. LEVEL OF EVIDENCE: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence
    corecore