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Volume Fluctuations and Geometrical Constraints in Granular Packs
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I study the structural organization and correlations in very large packings of equally sized spheres,
reconstructed in three dimensions with x-ray computed tomography. I show that the geometrical structure
can be conveniently studied as a packing of irregular tetrahedra with volume distribution that must decay
exponentially with parameters controlled by the conditions of mechanical stability, nonoverlapping, and
space filling. I argue that the system’s structure can be described as constituted of two phases: (1) an
‘‘unconstrained’’ phase which freely shares the volume and (2) a ‘‘constrained’’ phase which assumes
configurations accordingly with the geometrical constraints. It results that the granular system exploits
heterogeneity maximizing freedom and entropy while constraining mechanical stability.
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TABLE I. Sample density and their intervals of variations
(� ) within each sample, total number of spheres (N), number
of spheres in the central region (NG), and average number of
incident Delaunay neighbors hfi.

Packing fraction N NG hfi

A 0:586� 0:005 102 897 54719 14.6
B 0:596� 0:006 34016 15013 14.6
C 0:619� 0:005 142 919 91984 14.4
D 0:626� 0:008 35511 15725 14.4
E 0:630� 0:01 35881 15852 14.4
F 0:640� 0:005 36461 16247 14.3
In this Letter I investigate how space is shared among
the particles in a granular pack and I discuss how the study
of such a space partition is essential for understanding both
the static properties of these structures and the dynamical
mechanisms which generate them. When equal spheres are
packed in a container they can arrange in a way to mini-
mize potential (gravitational) energy by maximizing the
packing fraction. The pursuit of maximum compaction is
common to several physical systems and, at atomic level, it
is a feature associated with metallic bounding. From a
purely geometrical perspective, it is known that the largest
attainable packing fraction in a system of equal spheres is
� � �=

������
18
p

� 0:74 [1,2], which corresponds to a stack of
parallel hexagonal layers of spheres (forming the so-called
Barlow packings). Conversely, it is observed empirically
that when balls are poured in a container they spontane-
ously arrange in a disorderly fashion occupying a fraction
of the total volume between 0.555 and 0.64. The study of
these disordered structures is very challenging and the
available investigation tools appear to be inadequate to
capture their essential features. Indeed, a complete descrip-
tion of the structure of a disordered system requires a very
large amount of information about coordinates, orienta-
tions, shapes, and connectivities of all the elements. It is,
however, clear that not all this information is necessary to
determine the properties of these systems. On the contrary,
there exist several states with different microscopic real-
izations which share the same macroscopic properties.

One of the challenges of the research in this field is to
find a simple measure which characterizes the state of the
system giving information about the packing structure and
its properties [3–8]. In this Letter, I show that a disordered
sphere pack can be described in terms of a simple parame-
ter which depends on the packing fraction and on a simple
topological property. This is demonstrated by first search-
ing for the local structural motifs which make the ‘‘build-
ing blocks’’ of such systems. Second, by exploring the
allowed local fluctuation of the volumes of such building
blocks, and predicting their volume distribution. Third, by
06=96(1)=018002(4)$23.00 01800
comparing the theoretical predictions with the experimen-
tal results.

The experimental data reported in this Letter are based
on the analysis of the largest empirical data set presently
available in the literature [9]. Such a data set is constructed
from the study, by means of x-ray computed tomography,
of large samples of disorderly packed monosized spheres.
This database records the positions of more than 385 000
sphere centers from 6 samples of acrylic beads prepared in
a cylindrical container. The precision on the coordinates is
better than 0.1% of the sphere diameters and the sphere
polydispersity is within 2%. In this Letter I refer to these
samples with labels A, B, C, D, E, and F; their packing
fractions and sample sizes are reported in Table I. The
investigations reported in this Letter are performed over an
internal region (G) 4 sphere diameters away from the
sample boundaries. (Spheres outside G are considered
when computing the neighboring environment of spheres
in G.)

The search for the elementary building blocks is per-
formed by introducing a new technique to investigate the
structural correlations among the packed spheres. This
analysis is based on two important definitions: bounded
spheres and common neighbor [10]. In particular, two
spheres are defined ‘‘bounded’’ if they stay within a given
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http://dx.doi.org/10.1103/PhysRevLett.96.018002


PRL 96, 018002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JANUARY 2006
threshold radial distance ~r, whereas a ‘‘common neighbor’’
of two bounded sphere is a third sphere which is also
bounded to both the two spheres. It can be calculated that
the maximum number of common neighbors which can be
placed around two bounded spheres is equal to 5 for any
threshold distance smaller than ~r �

��������
5=4

p
d ’ 1:118d,

where d is the spheres’ diameter. Fixed a threshold dis-
tance, the numbers of configurations with n common
neighbors is a very sensitive measure of the local organi-
zation. For instance, when the threshold distance is 1:1d,
the fraction of configurations with 4 common neighbors
increases sensibly during compaction varying from 17% at
� � 0:586 (A) to 31% at � � 0:640 (F). Similarly, the
configurations with 5 common neighbors increase from
less than 3% to above 8% when packing fraction varies
between 0.586 to 0.640 (A to F).

The fact that the number of common neighbors is so
sensitive to the packing properties suggests that the study
of the local organization around couples of bounded
spheres could be the key to understand the structure of
these systems. To this end, in this Letter, I introduce a
technique to reveal how common neighbors are distributed.
This analysis consists of the study of the dihedral angles
between common neighbors around couples of bounded
spheres. These angles are calculated by first constructing a
triangular face with two vertices occupied by a couple of
bounded spheres and the third vertex occupied by the
common neighbor. Then the dihedral angles are measured
between such a triangle and all the other triangles formed
with the other neighbors common to the original couple of
spheres. The resulting distribution of angles is shown in
Fig. 1 (for threshold distance ~r � 1:1d). Such distribution
is symmetric in � and 360� � and has two large peaks at
� � arccos�1=3� � 70:5 . . . and 360� arccos�1=3� �
289:4 . . . . These values coincide with the dihedral angles
in a regular tetrahedron. Other two (smaller) peaks are also
visible at � � 2 arccos�1=3� � 141:0 . . . and � �
218:9 . . . . They also correspond to configurations made
of two touching regular tetrahera. These peaks clearly
indicate that the common neighbors tend to gather together
forming tetrahedral packings. It is worth noting that the
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FIG. 1 (color online). Dihedral angle distribution (x axis:
angular degrees; y axis: renormalized frequencies). The vertical
lines indicate the angles � � n arccos�1=3� (and 360� �) with
n � 1, 2, 3, 4, 5 (tetrahedral packings). The dashed lines are at
the angles � � n360=5 (n � 1, 2, 3, 4).
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essential features of this distribution, and, in particular, the
position of the peaks, are a little sensitive to the choice of
the threshold. Indeed, the same kind of distributions are
obtained for different values of the threshold distance in a
range between 1:0d and 1:11d. A detailed analysis of the
subset of configurations with dihedral angles in the interval
within arccos�1=3� � 1 degree [and within 360�
arccos�1=3� � 1] confirms that they are originated by tet-
rahedral configurations. In particular, these configurations
are very regular tetrahedra with edge lengths between
0:99d and 1:01d and volumes which take values within
the limits 0:11d3 and 0:13d3 in 99% of the configurations
(a regular tetrahedron with edge lengths equal to d has
volume v� �

���
2
p
=12d3 ’ 0:118d3).

The analysis of the dihedral angles distribution has
revealed that these amorphous structures can be conven-
iently viewed as the result of a packing of tetrahedra. There
is a natural way to subdivide a structure into a system of
tetrahedra. This is the Delaunay decomposition which
constructs a system of minimal tetrahedra with vertices
on the centers of neighboring spheres chosen in such a way
that no other spheres in the pack have centers within the
circumsphere of each Delaunay tetrahedron. One of the
advantages of such decomposition is that it does not re-
quire the introduction of any threshold. The Delaunay
decomposition uniquely associates the packing of N parti-
cles with space-filling systems of T tetrahedra, with

T �
�
hfi
2
� 1

�
N; (1)

where hfi is the average number of tetrahedra incident on
each particle. In general, hfi takes values in the narrow
range between 14 � hfi � 2	 48�2=35 ’ 15:53, with the
lower limit corresponding to close packed configurations
and the upper limit associated with a ‘‘granular gas’’ of
randomly positioned particles [11]. In mechanically stable
equal-spheres packings, under gravity, this interval of
variation reduces further with typical values around hfi �
14:5. This is—for instance—the case across the 6 samples
A–F (see Table I).

Once established that the elementary building blocks are
tetrahedra, the further step is to explore how these tetrahe-
dra are arranged in space. Indeed, some local configura-
tions are closer and others are looser and the whole packing
is made by gluing together these tetrahedra in a disordered
way which is compatible with the following three condi-
tions: (1) mechanical stability, (2) geometrical constraints,
and (3) space filling. Let me consider each of these con-
ditions separately.

Mechanical stability is ensured by the network of con-
tact between spheres. Indeed, in order to equilibrate forces
and torques, a mechanically stable packing must satisfy
topological conditions. In terms of Delaunay decomposi-
tion, it is empirically established [2,9,12] that such topo-
logical conditions constrain the average number of
Delaunay neighbors to stay in a narrow range around hfi ’
14:5. This is in agreement with what is observed in the
2-2
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FIG. 2 (color online). (a) Normalized frequencies of the dis-
tribution of Delaunay volumes in G. The vertical lines indicate
the maximum volumes attainable by tetrahedra with 4, 5, or 6
couples of spheres in contact (respectively:

���
3
p
d3=12, d3=8, and���

2
p
d3=12). (b) Log-log plots of the cumulative distributions

P<�v� (the probability of finding a volume smaller than v).
(c) Log-linear plots of the inverse normalized cumulative distri-
bution P>�v� (the probability of finding a volume larger than v).
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samples A–F where hfi varies within the two extremes
14.3 (sample F) and 14.6 (sample A).

The geometrical constraints are enforced by the condi-
tion of nonoverlapping. Equal spheres pack locally in the
closest way when disposed all in touch with each other
with centers on the vertices of a regular tetrahedron. Such a
tetrahedron has volume v� �

���
2
p
=12d3. Therefore, the

geometrical constraints fix a lower value for the volume
attainable by a close packed Delaunay tetrahedron to v�

[Roger’s bound [2] ].
The constraint of space filling implies that the sum

over all Delaunay volumes is equal to the total volume
(
P
ivi � V).
If one considers the Delaunay decomposition as an

ensemble of T independent cells with volumes vi that
freely exchange volume among each other under the three
constraints described previously, then the partition func-
tion of such a system can be calculated exactly: Z � �V �
Tv��T=T!, and the probability to find a tetrahedron with a
volume v reads

P�v� �
1

V=T � v�

�
1�

v� v�

V � Tv�

�
T�1

: (2)

In the (thermodynamic) limit T ! 1, this expression sim-
plifies to

P�v� �
1

hvi � v�
exp

�
�

v� v�

hvi � v�

�
; (3)

with hvi � V=T the average volume.
The empirical analysis of the six samples A–F confirm

such theoretical prediction. In Fig. 2 it is shown that the
inverse normalized cumulative distributions P>�v� � 1�R
v
0 P�v�dv are well described, at large volumes, by the

exponential behavior: P>�v� / exp���v� [linear behavior
in log-linear scale, Fig. 2(c)]. The best-fits values for the
coefficients are: �d3 � 43:9, 45.4, 55.2, 64.6, 66.8, 72.9
(samples A to F, respectively). Remarkably, the present
theory is able to recover quantitatively such coefficients.
Indeed, Eq. (3) predicts: ��1 � hvi � v�. The expected
theoretical values for � can be obtained by imposing the
three criteria on mechanical stability, geometrical con-
straints, and space filling. In particular, the geometrical
constraint gives: v� �

���
2
p
d3=12. The space-filling condi-

tion implies � � �d3N=�6V�, which, by using Eq. (1),
gives: hvi � �d3=
3�hfi � 2����1. By substituting these
values, the coefficient � can be written as:

��1 ’
�d3

3�hfi � 2�
��1 �

���
2
p
d3

12
; (4)

where the value of hfi can be conveniently fixed to 14.5 by
observing that the criterium for mechanical stability re-
quires hfi to stay in a narrow range around such a value. A
comparison between this theoretical prediction and the
empirical results is shown in Fig. 3. The agreement be-
tween the theory and the experimental data is remarkable.
In this figure it is also shown that variations of hfi within
the extreme values 14.3 to 14.6 experimentally observed
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(Table I) do not affect significantly the results. Note that
other choices for the elementary volumes, such as the
Voronoı̈ decomposition, do not yield to such neat expo-
nential decay in the volume distributions [13]. An empiri-
cal study for the void volume distribution was proposed
recently by Richard et al. [14]. Although they analyzed
rather different systems (polydisperse packing of glass
beads prepared at different densities by vertical shaking
with different amplitudes), they also observe an exponen-
tial behavior for the probability distribution of the void
volumes. The present theory can be similarly applied to the
void-volume repartition and it predicts an exponential
decay at large volumes with coefficient: ��1 � hvvoidi �

v�void, with hvvoidi the average void volume and v�void the
minimum void volume. Remarkably, also in this case, this
theoretical prediction results in good quantitative agree-
ment with the empirical data reported in [14].

Probably the most striking property of granular materi-
als is their eclectic behavior which is nether classifiable as
a solid nor as a fluid [15]. I have shown previously that the
structure of such systems can be conveniently described in
terms of a packing of tetrahedra with exponential proba-
bility distribution at large volumes. From Fig. 2 one iden-
2-3
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FIG. 3 (color online). Coefficients ��1=d3 vs the inverse
packing fraction ��1. The symbols correspond to the six samples
A–F. The full line is the theoretical predictions from Eq. (4) with
hfi � 14:5. The two dot-dashed lines are the theoretical results
for the two extreme cases hfi � 14:3 and hfi � 14:6.
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tifies that the distribution is indeed exponential for volumes
larger than �0:14d3. Meaningfully, the (small) volume
region at which such distribution ceases to be exponential
corresponds to Delaunay tetrahedra where most of the
couples of spheres are in contact. In particular, when all
the 6 couples spheres are in touch, the volume is v� ’
0:118d3, whereas when 5 couples are in touch, a tetrahe-
dron can reach a maximum volume of d3=8 � 0:125d3;
conversely, when only 4 spheres are in touch, the maxi-
mum reachable volume is

���
3
p
d3=12 ’ 0:144d3 [see

Fig. 2(a)]. This fact indicates that below a given volume
the tetrahedra are made of spheres in contact and geomet-
rical constraints become unavoidable and relevant. One
can therefore argue that these systems can be conveniently
viewed as comprised of two phases: (1) a phase made by
compact tetrahedra (v < 0:144d3) which are geometrically
constrained and are responsible for the mechanical stability
and (2) a phase made by loose tetrahedra (v > 0:144d3)
which are geometrically unconstrained and take volumes
accordingly with the distribution in Eq. (3).

Let me note that some tetrahedra can assume very small
volumes (see Fig. 2). A Delaunay tetrahedron with zero
volume corresponds to a configuration of 4 in-plane
spheres. Therefore, configurations with volumes smaller
than v� are, in general, loose packings. Remarkably,
Fig. 2(b) reveals that the probability distribution for such
small volumes follows a power law behavior with typical
exponents between 1.09 and 1.17. Such power laws might
be related with the power laws observed in the distributions
of the radial distance between couples of spheres [9].

In conclusion, by means of two independent methods
(namely the analysis of the dihedral angles and the study of
the volume distribution), I have shown that sphere packs
can be conveniently studied as space-filling assemblies of
elementary tetrahedra. I have demonstrated that the vol-
umes of such tetrahedra follow an exponential distribution
(at large volumes) which is controlled by the three con-
01800
ditions of mechanical stability, geometrical constraints,
and space filling. It has been discussed that the system’s
state can be described in terms of the coefficient at the
exponent � which is analogous to Edwards’ compactivity
��X��1 [16,17]. The theoretical predictions for � are in
very good agreement with the empirical observations. Such
an agreement is particularly remarkable considering that
there are no adjustable parameters. The analysis of the
probability distribution at small volumes reveals that, be-
low v ’

���
3
p
=12d3 ’ 0:144d3, geometrical constraints, as-

sociated to the nonoverlapping condition, lead to a more
complex distribution which is shaped by the accessible
configurations in systems of touching spheres. Such differ-
ences in the kind of distributions at large and small vol-
umes is a signature of structural heterogeneity. The
granular system exploits such heterogeneity maximizing
entropy and freedom while constraining mechanical
stability.
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[6] D. S. Dean and A. Lefèvre, Phys. Rev. Lett. 90, 198301
(2003).

[7] G. D’Anna, P. Mayor, A. Barrat, V. Loreto, and F. Nori,
Nature (London) 424, 909 (2003).
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