18,716 research outputs found

    Constructing a Social Problem: The Press and the Environment

    Get PDF
    The U. S. daily press might seem to be in a strategic position to function as a claims-maker in the early construction of a social problem. But in the case of the manufacture of environmentalism as a social reality in the 1960\u27s and 70\u27s, the press was fairly slow to adopt a holistic environmental lexicon. Its reporting of environmental news even now only partially reflects concepts promoted by positive environmental claims-makers, such as planet-wide interdependence, and the threats to it by destructive technologies. The movement of environmental claims seems to have started with interest-group entrepreneurship using interpersonal communication and independent publication, gone on to attention in government, then finally--and incompletely--been put on the agenda of the daily press. Once on the press agenda, coverage of environmental issues may have improved. But there are some constraints, possibly inherent in the press as an institution, that limit its role in the incipient construction of some social problems

    Analytical and experimental investigation of sidelobe suppression techniques for reflector type spacecraft antenna Final technical report

    Get PDF
    Near axis sidelobe suppression techniques for circularly polarized reflector type spacecraft antenna

    Snow wetness measurements for melt forecasting

    Get PDF
    A microwave technique for directly measuring snow pack wetness in remote installations is described. The technique, which uses satellite telemetry for data gathering, is based on the attenuation of a microwave beam in transmission through snow

    Two-qubit Quantum Logic Gate in Molecular Magnets

    Full text link
    We proposed a scheme to realize a controlled-NOT quantum logic gate in a dimer of exchange coupled single-molecule magnets, [Mn4]2[\textrm{Mn}_4]_2. We chosen the ground state and the three low-lying excited states of a dimer in a finite longitudinal magnetic field as the quantum computing bases and introduced a pulsed transverse magnetic field with a special frequency. The pulsed transverse magnetic field induces the transitions between the quantum computing bases so as to realize a controlled-NOT quantum logic gate. The transition rates between the quantum computing bases and between the quantum computing bases and other excited states are evaluated and analyzed.Comment: 7 pages, 2 figure

    Foundational nonuniform (co)datatypes for higher-order logic

    Get PDF
    Nonuniform (or “nested” or “heterogeneous”) datatypes are recursively defined types in which the type arguments vary recursively. They arise in the implementation of finger trees and other efficient functional data structures. We show how to reduce a large class of nonuniform datatypes and codatatypes to uniform types in higher-order logic. We programmed this reduction in the Isabelle/HOL proof assistant, thereby enriching its specification language. Moreover, we derive (co)recusion and (co)induction principles based on a weak variant of parametricity

    The VLQ Calorimeter of H1 at HERA: A Highly Compact Device for Measurements of Electrons and Photons under Very Small Scattering Angles

    Full text link
    In 1998, the detector H1 at HERA has been equipped with a small backward spectrometer, the Very Low Q^2 (VLQ) spectrometer comprising a silicon tracker, a tungsten - scintillator sandwich calorimeter, and a Time-of-Flight system. The spectrometer was designed to measure electrons scattered under very low angles, equivalent to very low squared four - momentum transfers Q^2, and high energy photons with good energy and spatial resolution. The VLQ was in operation during the 1999 and 2000 run periods. This paper describes the design and construction of the VLQ calorimeter, a compact device with a fourfold projective energy read-out, and its performance during test runs and in the experiment.Comment: 32 pages, 25 figures, 2 tables (To be submitted to Nucl. Instrum. Meth. A

    First principles study of local electronic and magnetic properties in pure and electron-doped Nd2_2CuO4_4

    Full text link
    The local electronic structure of Nd2CuO4 is determined from ab-initio cluster calculations in the framework of density functional theory. Spin-polarized calculations with different multiplicities enable a detailed study of the charge and spin density distributions, using clusters that comprise up to 13 copper atoms in the CuO2plane. Electron doping is simulated by two different approaches and the resulting changes in the local charge distribution are studied in detail and compared to the corresponding changes in hole doped La2CuO4. The electric field gradient (EFG) at the copper nucleus is investigated in detail and good agreement is found with experimental values. In particular the drastic reduction of the main component of the EFG in the electron-doped material with respect to LaCuO4 is explained by a reduction of the occupancy of the 3d3z^2-r^2 atomic orbital. Furthermore, the chemical shieldings at the copper nucleus are determined and are compared to results obtained from NMR measurements. The magnetic hyperfine coupling constants are determined from the spin density distribution

    Electrical spin injection from an organic-based ferrimagnet in a hybrid organic/inorganic heterostructure

    Full text link
    We report the successful extraction of spin polarized current from the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x (x~2, TCNE: tetracyanoethylene; TC ~ 400 K, EG ~ 0.5 eV, s ~ 10-2 S/cm) and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). The spin current tracks the magnetization of V[TCNE]x~2, is weakly temperature dependent, and exhibits heavy hole / light hole asymmetry. This result has implications for room temperature spintronics and the use of inorganic materials to probe spin physics in organic and molecular systems
    corecore