13,588 research outputs found

    Configuration mixing of angular-momentum projected triaxial relativistic mean-field wave functions. II. Microscopic analysis of low-lying states in magnesium isotopes

    Get PDF
    The recently developed structure model that uses the generator coordinate method to perform configuration mixing of angular-momentum projected wave functions, generated by constrained self-consistent relativistic mean-field calculations for triaxial shapes (3DAMP+GCM), is applied in a systematic study of ground states and low-energy collective states in the even-even magnesium isotopes 2040^{20-40}Mg. Results obtained using a relativistic point-coupling nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ\delta-interaction in the pairing channel, are compared to data and with previous axial 1DAMP+GCM calculations, both with a relativistic density functional and the non-relativistic Gogny force. The effects of the inclusion of triaxial degrees of freedom on the low-energy spectra and E2 transitions of magnesium isotopes are examined.Comment: 28 pages, 11 figures and 1 tabl

    On Size and Shape of the Average Meson Fields in the Semibosonized Nambu & Jona-Lasinio Model

    Full text link
    We consider a two-flavor Nambu \& Jona-Lasinio model in Hartree approximation involving scalar-isoscalar and pseudoscalar-isovector quark-quark interactions. Average meson fields are defined by minimizing the effective Euklidean action. The fermionic part of the action, which contains the full Dirac sea, is regularized within Schwinger's proper-time scheme. The meson fields are restricted to the chiral circle and to hedgehog configurations. The only parameter of the model is the constituent quark mass MM which simultaneously controls the regularization. We evaluate meson and quark fields self-consistently in dependence on the constituent quark mass. It is shown that the self-consistent fields do practically not depend on the constituent quark mass. This allows us to define a properly parameterized reference field which for physically relevant constituent masses can be used as a good approximation to the exactly calculated one. The reference field is chosen to have correct behaviour for small and large radii. To test the agreement between self-consistent and reference fields we calculate several observables like nucleon energy, mean square radius, axial-vector constant and delta-nucleon mass splitting in dependence on the constituent quark mass. The agreement is found to be very well. Figures available on request.Comment: 12 pages (LATEX), 3 figures available on request, report FZR 93-1

    Bending and wrinkling as competing relaxation pathways for strained free-hanging films

    Full text link
    An equilibrium phase diagram for the shape of compressively strained free-hanging films is developed by total strain energy minimization. For small strain gradients {\Delta}{\epsilon}, the film wrinkles, while for sufficiently large {\Delta}{\epsilon}, a phase transition from wrinkling to bending occurs. We consider competing relaxation mechanisms for free-hanging films, which have rolled up into tube structures, and we provide an upper limit for the maximum achievable number of tube rotations.Comment: 4 pages, 4 figure

    Pembuatan Media Pembelajaran Sistematika Ajaran Islam Pada Pondok Pesantren Ibnul Qoyyim

    Full text link
    The media is one component in the learning process which is sorely needed, given that the position is not just a media teaching aids, but also an integral part of learning. Besides being able to replace a teacher\u27s job as presenter materials (channel messages) media also has the unique potential to assist students in improving teaching and learning motivation of Islamic education. Therefore learning media can be regarded as a learning resource that can help achieve the goal of learning Islamic education in improving motivation in teaching and learning Islamic education.The steps in the manufacture of interactive learning media, namely (1) needs analysis, (2) the design of instructional media, (3) create instructional media, (4) due diligence, (5) revision of the product, (6) product trials, (7) the final product. Interactive learning media validation performed on subject matter experts, media specialists and language experts, so it can be concluded that the creation of interactive learning media is valid and does not need to be revise

    Ultrafast optical spin echo for electron spins in semiconductors

    Full text link
    Spin-based quantum computing and magnetic resonance techniques rely on the ability to measure the coherence time, T2, of a spin system. We report on the experimental implementation of all-optical spin echo to determine the T2 time of a semiconductor electron-spin system. We use three ultrafast optical pulses to rotate spins an arbitrary angle and measure an echo signal as the time between pulses is lengthened. Unlike previous spin-echo techniques using microwaves, ultrafast optical pulses allow clean T2 measurements of systems with dephasing times T2* fast in comparison to the timescale for microwave control. This demonstration provides a step toward ultrafast optical dynamic decoupling of spin-based qubits.Comment: 4 pages, 3 figure

    A cluster expansion approach to exponential random graph models

    Full text link
    The exponential family of random graphs is among the most widely-studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated by cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region.Comment: 15 pages, 1 figur
    corecore