29 research outputs found

    Cross-enhancement of ANGPTL4 transcription by HIF1 alpha and PPAR beta/delta is the result of the conformational proximity of two response elements

    Get PDF
    BACKGROUND: Synergistic transcriptional activation by different stimuli has been reported along with a diverse array of mechanisms, but the full scope of these mechanisms has yet to be elucidated. RESULTS: We present a detailed investigation of hypoxia-inducible factor (HIF) 1 dependent gene expression in endothelial cells which suggests the importance of crosstalk between the peroxisome proliferator-activated receptor (PPAR) β/δ and HIF signaling axes. A migration assay shows a synergistic interaction between these two stimuli, and we identify angiopoietin-like 4 (ANGPTL4) as a common target gene by using a combination of microarray and ChIP-seq analysis. We profile changes of histone marks at enhancers under hypoxia, PPARβ/δ agonist and dual stimulations and these suggest that the spatial proximity of two response elements is the principal cause of the synergistic transcription induction. A newly developed quantitative chromosome conformation capture assay shows the quantitative change of the frequency of proximity of the two response elements. CONCLUSIONS: To the best of our knowledge, this is the first report that two different transcription factors cooperate in transcriptional regulation in a synergistic fashion through conformational change of their common target genes

    TNFα signals through specialized factories where responsive coding and miRNA genes are transcribed: Specialized transcription factories

    Get PDF
    Tumour necrosis factor alpha (TNFα) is a potent cytokine that signals through nuclear factor kappa B (NFκB) to activate a subset of human genes. It is usually assumed that this involves RNA polymerases transcribing responsive genes wherever they might be in the nucleus. Using primary human endothelial cells, variants of chromosome conformation capture (including 4C and chromatin interaction analysis with paired-end tag sequencing), and fluorescence in situ hybridization to detect single nascent transcripts, we show that TNFα induces responsive genes to congregate in discrete ‘NFκB factories'. Some factories further specialize in transcribing responsive genes encoding micro-RNAs that target downregulated mRNAs. We expect all signalling pathways to contain this extra leg, where responding genes are transcribed in analogous specialized factories

    Direct evidence for pitavastatin induced chromatin structure change in the KLF4 gene in endothelial cells.

    Get PDF
    Statins exert atheroprotective effects through the induction of specific transcriptional factors in multiple organs. In endothelial cells, statin-dependent atheroprotective gene up-regulation is mediated by Kruppel-like factor (KLF) family transcription factors. To dissect the mechanism of gene regulation, we sought to determine molecular targets by performing microarray analyses of human umbilical vein endothelial cells (HUVECs) treated with pitavastatin, and KLF4 was determined to be the most highly induced gene. In addition, it was revealed that the atheroprotective genes induced with pitavastatin, such as nitric oxide synthase 3 (NOS3) and thrombomodulin (THBD), were suppressed by KLF4 knockdown. Myocyte enhancer factor-2 (MEF2) family activation is reported to be involved in pitavastatin-dependent KLF4 induction. We focused on MEF2C among the MEF2 family members and identified a novel functional MEF2C binding site 148 kb upstream of the KLF4 gene by chromatin immunoprecipitation along with deep sequencing (ChIP-seq) followed by luciferase assay. By applying whole genome and quantitative chromatin conformation analysis {chromatin interaction analysis with paired end tag sequencing (ChIA-PET), and real time chromosome conformation capture (3C) assay}, we observed that the MEF2C-bound enhancer and transcription start site (TSS) of KLF4 came into closer spatial proximity by pitavastatin treatment. 3D-Fluorescence in situ hybridization (FISH) imaging supported the conformational change in individual cells. Taken together, dynamic chromatin conformation change was shown to mediate pitavastatin-responsive gene induction in endothelial cells

    Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity.

    Get PDF
    Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H(+) leakage, and the fusion might contribute to invasiveness once a cell is transformed. Cell Rep 2015 Jul 14; 12(2):272-285

    Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation

    Get PDF
    Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIAPET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells

    Exploring the Upgrading of Chinese Automotive Manufacturing Industry in Global Value Chain:An Empirical study based on Panel Data

    No full text
    In the age of globalization, the upgrading of China’s manufacturing industries has attracted great attention from both academicians and practitioners, as it certainly has great implications for the development of China and, even further, for the development of the whole world. To address this issue, the study clarifies the effects of the internal technological innovation capability (ITIC) and external linkages (ELs) on upgrading the Chinese automotive manufacturing industry (CAMI) in the global value chain, in order to indicate the appropriate way for the CAMI to be further upgraded and provide references for the formulation of regional automotive industrial policies. Based on Chinese panel data, the results confirm that both ITIC and EL are important for the upgrading of the CAMI, with ITIC being the more important. Improvement of ITIC facilitates the industry’s cooperation with the EL, resulting in better knowledge access. Furthermore, the results of cluster analysis reveal that regions with relatively developed automotive industries place emphasis on both the ITIC and EL. However, in some regions (e.g., Shanghai and Chongqing), the utility of EL seems insufficient. Therefore, the results of this paper, on the one hand, suggest policies should be directed towards increasing the ITIC of CAMI. On the other hand, in some regions, managers and policymakers need to explore further the advantage of clustering

    Study of X-ray spectrum emitted due to the impact of ~(129)Xe~(q+) on different ion's charge on Au

    No full text
    <span style="color: rgb(51, 51, 51); font-family: arial, helvetica, sans-serif; font-size: 13px; line-height: 22px; background-color: rgb(248, 248, 248);">We report the experiment data of X-ray spectra produced by the impact of Xeq+ (q = 1 0, 15, 20, 26) with 2.4 MeV kinetic energy on Au surface in the National Laboratory of Heavy Ion Research Facility in Lanzhou. Results show that there is different broadening of Au M X-ray owing to multiply ionized effect in the collision with heavy ions, the degree of ionization mainly depends on the distribution of the electronic states in the ions&#39; outer shell. The yield of X-ray is calculated and compared with BEA (binary encounter approximation) model, and the effect of ion charge state on the X-ray yield is also discussed.</span

    X-ray spectrum emitted by the impact of ~(152)Eu~(20+) of near Bohn velocity on Au surface

    No full text
    <span style="color: rgb(51, 51, 51); font-family: arial, helvetica, sans-serif; font-size: 13px; line-height: 22px; background-color: rgb(248, 248, 248);">The characteristic X-ray spectra produced by the impact of highly charged ions of Eu-152(20+) with energies from 2.0 to 6.0 MeV on Au surface are measured. It is found that highly charged ions could excite both the characteristic X-ray spectra of M-zeta, M-alpha and M-delta of Au and the characteristic X-ray spectra of M-alpha of Eu. The total X-ray yield increases with the ion kinetic energy increasing. The total production cross section of Au induced by Eu20+ is measured and compared with those obtained from the binary encounter approximation, plane-wave-Born approximation, and the energy-loss Coulomb deflection perturbed stationary state relativistic theoretical models.</span

    An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells.

    No full text
    The aberrant activities of transcription factors such as the androgen receptor (AR) underpin prostate cancer development. While the AR cis-regulation has been extensively studied in prostate cancer, information pertaining to the spatial architecture of the AR transcriptional circuitry remains limited. In this paper, we propose a novel framework to profile long-range chromatin interactions associated with AR and its collaborative transcription factor, erythroblast transformation-specific related gene (ERG), using chromatin interaction analysis by paired-end tag (ChIA-PET). We identified ERG-associated long-range chromatin interactions as a cooperative component in the AR-associated chromatin interactome, acting in concert to achieve coordinated regulation of a subset of AR target genes. Through multifaceted functional data analysis, we found that AR-ERG interaction hub regions are characterized by distinct functional signatures, including bidirectional transcription and cotranscription factor binding. In addition, cancer-associated long noncoding RNAs were found to be connected near protein-coding genes through AR-ERG looping. Finally, we found strong enrichment of prostate cancer genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) at AR-ERG co-binding sites participating in chromatin interactions and gene regulation, suggesting GWAS target genes identified from chromatin looping data provide more biologically relevant findings than using the nearest gene approach. Taken together, our results revealed an AR-ERG-centric higher-order chromatin structure that drives coordinated gene expression in prostate cancer progression and the identification of potential target genes for therapeutic intervention
    corecore