1,416 research outputs found

    Effect of Impurities on Thermal Decomposition of Calcium Carbonate

    Get PDF
    1016-101

    Reactions of Pyruvonitrile with Nb(V) & Ta(V) Alkoxides

    Get PDF
    406-40

    Bronchoalveolar lavage study in victims of toxic gas leak at Bhopal

    Get PDF
    Bronchoalveolar lavage using flexible fibreoptic bronchoscope was carried out in 50 patients 1-2½ yr after exposure to the ‘toxic gas’ at Bhopal. Thirty six patients in the analysis were categorised into 3 groups (viz., mild, moderate and severe), depending upon the severity of exposure. There was an increase in cellularity in the lower respiratory tract (alveolitis) of the severely exposed patients (in both smokers and non-smokers), compared to normals (P< 0.05). The increase in cellularity in severely exposed non-smokers was due to abnormal accumulation of macrophages (P<0.01), and in severely exposed smokers, to macrophages (P<0.01) and neutrophils (P<0.05). Mild and moderately exposed patients did not show significant change in cellularity in lower respiratory tract, compared to normal individuals (P>0.2). There was a trend towards increasing cellularity, as the severity increased (P < 0.0001) and higher numbers of total cells were seen in severely exposed smokers, suggesting that smoking is a risk factor. It appears, therefore, that subjects severely exposed to the toxic gas at Bhopal may have a subclinical alveolitis characterised by accumulation and possibly activation of macrophages in the lower respiratory tract. Smokers, who were exposed to the gas had in addition, accumulation of neutrophils

    Observation of Crossover from Ballistic to Diffusion Regime for Excimer Molecules in Superfluid 4^4He

    Get PDF
    We have measured the temperature dependence of the time of flight of helium excimer molecules He2* in superfluid 4He and find that the molecules behave ballistically below 100mK and exhibit Brownian motion above 200 mK. In the intermediate temperature range the transport cannot be described by either of the models.Comment: 8 pages, 6 figures, submitted to the Proceedings of the International Conference on Quantum Fluids and Solids 201

    Characterization and its implication on beneficiation of low grade iron ore by gravity separation

    Get PDF
    Studies were undertaken on low grade iron ore sample from Noamundi iron ore mines. The objective of this study was to examine the possibility of the physical beneficiation of low grade iron ore sample by physical methods for the blast furnace route of iron production. The present investigation relies on petrography and ore mineralogical characterization, ore textures (primary, secondary, metamorphic), liberation characters and its impact on the mineral beneficiation methods to produce quality concentrate. The geological characters, alteration mineralogy, morphometric variation, ore microscopy (using model microscope with transmitted and reflected light) and thereby understanding the genesis has given proper insight into the occurrence of various minerals. In addition to this, representative samples were employed for detailed investigation by using XRD, SEM-EDS and cathodoluminescence (CL) studies for confirmation of major as well as minor ore minerals and associated gangue minerals. Investigations suggest that lateritic iron ore samples obtained from the study area are composed of hematite (two generations), goethite (two generations) and limonitic material (younger generation) in association with major gangue minerals such as clay minerals (kaolinite, illite), bauxitic minerals(gibbsite, boehmite and diaspore), cryptocrystalline silica(japer, chert) and crystalline quartz as well as apatite and collophane. Fair liberation obtained below 74 micron size. It was interesting to find that inspite of the complex mineralogy of iron ore, beneficiation results using gravity separation like multi gravity separator (MGS), particularly in finer size ranges was encouraging. The result of ore-gangue mineralogical studies were found quite useful in evaluating the separation efficacy of gravity separation process. The process mineralogical data corroborated well with beneficiation results

    IoT Expunge: Implementing Verifiable Retention of IoT Data

    Full text link
    The growing deployment of Internet of Things (IoT) systems aims to ease the daily life of end-users by providing several value-added services. However, IoT systems may capture and store sensitive, personal data about individuals in the cloud, thereby jeopardizing user-privacy. Emerging legislation, such as California's CalOPPA and GDPR in Europe, support strong privacy laws to protect an individual's data in the cloud. One such law relates to strict enforcement of data retention policies. This paper proposes a framework, entitled IoT Expunge that allows sensor data providers to store the data in cloud platforms that will ensure enforcement of retention policies. Additionally, the cloud provider produces verifiable proofs of its adherence to the retention policies. Experimental results on a real-world smart building testbed show that IoT Expunge imposes minimal overheads to the user to verify the data against data retention policies.Comment: This paper has been accepted in 10th ACM Conference on Data and Application Security and Privacy (CODASPY), 202

    RF Conditioning of 75 MHz Prototype Heavy Ion RFQ

    Get PDF
    Abstract The Pelletron Accelerator Facility (PAF), Mumbai is engaged in development of a 75 MHz prototype Heavy Ion Radio Frequency Quadrupole (RFQ). The RF characterization of this RFQ consisting of 1.34m modulated vanes is completed. The medium power conditioning of the RFQ was started with the available 1 KW RF amplifier and results are discussed

    Low-Temperature Mobility of Surface Electrons and Ripplon-Phonon Interaction in Liquid Helium

    Full text link
    The low-temperature dc mobility of the two-dimensional electron system localized above the surface of superfluid helium is determined by the slowest stage of the longitudinal momentum transfer to the bulk liquid, namely, by the interaction of surface and volume excitations of liquid helium, which rapidly decreases with temperature. Thus, the temperature dependence of the low-frequency mobility is \mu_{dc} = 8.4x10^{-11}n_e T^{-20/3} cm^4 K^{20/3}/(V s), where n_e is the surface electron density. The relation T^{20/3}E_\perp^{-3} << 2x10^{-7} between the pressing electric field (in kV/cm) and temperature (in K) and the value \omega < 10^8 T^5 K^{-5}s^{-1} of the driving-field frequency have been obtained, at which the above effect can be observed. In particular, E_\perp = 1 kV/cm corresponds to T < 70 mK and \omega/2\pi < 30 Hz.Comment: 4 pages, 1 figur

    Magneto-shear modes and a.c. dissipation in a two-dimensional Wigner crystal

    Full text link
    The a.c. response of an unpinned and finite 2D Wigner crystal to electric fields at an angular frequency ω\omega has been calculated in the dissipative limit, ωτ1\omega \tau \ll 1, where τ1\tau ^{-1} is the scattering rate. For electrons screened by parallel electrodes, in zero magnetic field the long-wavelength excitations are a diffusive longitudinal transmission line mode and a diffusive shear mode. A magnetic field couples these modes together to form two new magneto-shear modes. The dimensionless coupling parameter β=2(ct/cl)σxy/σxx\beta =2(c_{t}/c_{l})|\sigma_{xy}/\sigma_{xx}| where ctc_{t} and clc_{l} are the speeds of transverse and longitudinal sound in the collisionless limit and σxy\sigma_{xy} and σxx\sigma_{xx} are the tensor components of the magnetoconductivity. For β1\beta \geqslant 1, both the coupled modes contribute to the response of 2D electrons in a Corbino disk measurement of magnetoconductivity. For β1\beta \gg 1, the electron crystal rotates rigidly in a magnetic field. In general, both the amplitude and phase of the measured a.c. currents are changed by the shear modulus. In principle, both the magnetoconductivity and the shear modulus can be measured simultaneously.Comment: REVTeX, 7 pp., 4 eps figure
    corecore