31 research outputs found

    Effect of Operating Conditions of the Extraction Process on the Physical Properties of Lubricating Oil

    Get PDF
    Lubricating base oil is commonly extracted from lube-oil cut, a petroleum cut, with the use of an aromatic solvent. Aromatic content of the final product is an important criterion specifying the product quality. The aromatic removal process to produce the lubricating oil should be carried out in a Liquid-Liquid extraction column. In a typical solvent extraction process, solvent to feed ratio, solvent and feed temperatures, agitation rate, and settling time could directly affect the yield of extraction. In the current study, the effect of agitation rate and settling time on the yield of extraction was studied. It was found that a settling time of 2hrs and an agitation rate of 430 RPM to be the optimum parameters of the extraction process

    CONCEPTION ET ANALYSE À BASE D'OPTIMISATION DE LIQUIDES IONIQUES SUR MESURE

    No full text
    Solvents comprise two thirds of all industrial emissions. Traditional organic solvents easily reach the atmosphere as they have high vapor pressure and are linked to a host of negative environmental effects including climate change, urban air-quality and human illness. Room temperature ionic liquids (RTIL), on the other hand, have low vapor pressure and are not flammable or explosive, thereby resulting in fewer environmental burdens and health hazards. However, their life cycle environmental impacts as well as freshwater ecotoxicity implications are poorly understood. RTILs are molten salts that exist as liquids at relatively low temperatures and have unique properties. Ionic liquids consist of a large organic cation and charge-delocalized inorganic or organic anion of smaller size and asymmetric shape. The organic cation can undergo unlimited structural variations through modification of the alkyl groups attached to the side chain of the base cation skeleton and most of these structural variations are feasible, from chemical synthesis point of view, due to the easy nature of preparation of their components. Functionally, ionic liquids can be tuned to impart specific desired properties by switching anions/cations or by incorporating functionalities into the cations/anions. It is estimated that theoretically more than a trillion ionic liquid structures can be formed. Due to their tunable nature, these molten salts have the potential to be used as solvents for variety of applications.Les solvants reprĂ©sentent les deux tiers de toutes les Ă©missions industrielles. Les solvants organiques traditionnels atteignent facilement l'atmosphĂšre car ils ont une pression de vapeur Ă©levĂ©e et sont liĂ©s Ă  une foule d'effets environnementaux nĂ©gatifs, y compris le changement climatique, la qualitĂ© de l'air urbain et les maladies humaines. Les liquides ioniques Ă  tempĂ©rature ambiante (RTIL), d'autre part, ont une faible pression de vapeur et ne sont pas inflammables ni explosifs, ce qui rĂ©duit les charges environnementales et les risques pour la santĂ©. Cependant, leurs impacts environnementaux sur le cycle de vie ainsi que les implications en matiĂšre d'Ă©cotoxicitĂ© en eau douce sont mal compris. RTILs sont des sels fondus qui existent comme des liquides Ă  des tempĂ©ratures relativement basses et ont des propriĂ©tĂ©s uniques. Les liquides ioniques sont constituĂ©s d'un grand cation organique et d'un anion inorganique ou organique dĂ©localisĂ© en charge de plus petite taille et de forme asymĂ©trique. Le cation organique peut subir des variations structurales illimitĂ©es par modification des groupes alkyle attachĂ©s Ă  la chaĂźne latĂ©rale du squelette de cation de base et la plupart de ces variations structurales sont rĂ©alisables, du point de vue de la synthĂšse chimique, du fait de la facilitĂ© de prĂ©paration de leurs composants . Fonctionnellement, les liquides ioniques peuvent ĂȘtre accordĂ©s pour confĂ©rer des propriĂ©tĂ©s dĂ©sirĂ©es spĂ©cifiques en commutant des anions / cations ou en incorporant des fonctionnalitĂ©s dans les cations / anions. On estime qu'en thĂ©orie plus d'un trillion de structures liquides ioniques peuvent ĂȘtre formĂ©es. En raison de leur nature rĂ©glable, ces sels fondus peuvent ĂȘtre utilisĂ©s comme solvants pour diverses applications

    Life-Cycle Perspectives on Aquatic Ecotoxicity of Common Ionic Liquids

    No full text
    This study compares the aquatic ecotoxicity impacts of production- and use-phase release of five common ionic liquids (ILs). Integrating toxicity data, physical properties, and fate and transport parameters with the USEtox model, we report, for the first time, the freshwater ecotoxicity characterization factors for [Bmim]<sup>+</sup>[Br]<sup>−</sup>, [Bmim]<sup>+</sup>[Cl], [Bmim]<sup>+</sup>[BF<sub>4</sub>]<sup>−</sup>, [Bmim]<sup>+</sup>[PF<sub>6</sub>]<sup>−</sup>, and [BPy]<sup>+</sup>[Cl]<sup>−</sup> as 624, 748, 823, 927, and 1768 CTUe/kg, respectively. IL Production life cycle inventories were modeled and utilized to estimate their production-side ecotoxicity impacts. Literature on environmental aspects of ILs propagates either their green characteristics (no air emissions and high recyclability) or their nongreen aspects due to toxicity concerns of their release to water. This study adds a third dimension by showing that the upstream ecotoxicity impacts of producing ILs could outweigh the potential ecotoxicity impacts of direct release during use. Furthermore, for the studied ILs, an average of 83% of ecotoxicity impacts associated with their production can be linked to chemicals and materials released during the upstream synthesis steps, while only 17% of ecotoxicity impacts relate to life-cycle energy consumption. The findings underscore the need to develop sustainable synthesis routes, tight control over chemical releases during production, and careful selection of precursor materials and production processes
    corecore