76 research outputs found

    Contribution of Surface Leaf-Litter Breakdown and Forest Composition to Benthic Oxygen Demand and Ecosystem Respiration in a South Georgia Blackwater River

    Get PDF
    Many North American blackwater rivers exhibit low dissolved O2 (DO) that may be the result of benthic respiration. We examined how tree species affected O2 demand via the quantity and quality of litter produced. In addition, we compared areal estimates of surface leaf-litter microbial respiration to sediment O2 demand (SOD) and ecosystem respiration (ER) in stream and swamp reaches of a blackwater river to quantify contributions of surface litter decomposition to O2 demand. Litter inputs averaged 917 and 678 g m−2 y−1 in the swamp and stream, respectively. Tree species differentially affected O2 demand via the quantity and quality of litter produced. Bald cypress (Taxodium distichum) contributed most litter inputs because of its dominance and because it produced more litter per tree, thereby making greater relative contributions to O2 demand in the swamp. In the stream, water oak (Quercus nigra) produced litter supporting lower fungal biomass and O2 uptake rates, but produced more litter than red maple (Acer rubrum). Breakdown rates in the swamp were faster, whereas standing stock decreases were lower than in the stream, indicating greater organic matter retention. Surface litter microbial respiration accounted for 89% of SOD (6.37 g O2 m−2 d−1), and 57 to 89% of ER in the swamp. Our findings suggest that surface litter drives the majority of O2 demand in some blackwater swamps, and tree species with higher rates of litterfall may make larger contributions to ER. Forested swamps may be hotspots of O2 demand in blackwater rivers because low water velocities enhance retention

    Leaf litter nutrient uptake in an intermittent blackwater river : influence of tree species and associated biotic and abiotic drivers

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of British Ecological Society for personal use, not for redistribution. The definitive version was published in Functional Ecology 29 (2015): 849-860, doi:10.1111/1365-2435.12399.Organic matter may sequester nutrients as it decomposes, increasing in total N and P mass via multiple uptake pathways. During leaf litter decomposition, microbial biomass and accumulated inorganic materials immobilize and retain nutrients, and therefore both biotic and abiotic drivers may influence detrital nutrient content. We examined the relative importance of these types of nutrient immobilization and compared patterns of nutrient retention in recalcitrant and labile leaf litter. Leaf packs of water oak (Quercus nigra), red maple (Acer rubrum) and Ogeechee tupelo (Nyssa ogeche) were incubated for 431 days in an intermittent blackwater stream and periodically analyzed for mass loss, nutrient and metal content, and microbial biomass. These data informed regression models explaining temporal changes in detrital nutrient content. Informal exploratory models compared estimated biologically-associated nutrient stocks (fungal, bacterial, leaf tissue) to observed total detrital nutrient stocks. We predicted that (1) labile and recalcitrant leaf litter would act as sinks at different points in the breakdown process, (2) plant and microbial biomass would not account for the entire mass of retained nutrients, and (3) total N content would be more closely approximated than total P content solely from nutrients stored in leaf tissue and microbial biomass, due to stronger binding of P to inorganic matter. Labile litter had higher nutrient concentrations throughout the study. However, lower mass loss of recalcitrant litter facilitated greater nutrient retention over longer incubations, suggesting that it may be an important long-term sink. N and P content were significantly related to both microbial biomass and metal content, with slightly stronger correlation to metal content over longer incubations.This work was funded by the USDA-CSREES Integrated Research, Education, and Extension Competitive Grants Program’s National Integrated Water Quality Program (Award No. 2004-5113002224), Hatch & State funds allocated to the Georgia Agricultural Experiment Stations, USDA-ARS CRIS project funds, and a Student Research Grant awarded to Andrew Mehring from the Odum School of Ecology, University of Georgia.2016-01-2

    Bang-bang control of fullerene qubits using ultra-fast phase gates

    Full text link
    Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang-bang control provides a solution by repeatedly applying `kicks' to a qubit, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed on a nuclear spin qubit in a fullerene molecule (N@C60), and use it to bang-bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, in order to generate an arbitrary phase on the nuclear qubit. We anticipate the approach will be vital for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are unfeasible

    WIREs Water

    No full text
    Current design of bioretention systems is intended to intercept and retain stormwater, enhance infiltration, and remove organic particulates, nutrients, pathogens, metals, and other contaminants using natural processes that derive from the interactions of water, soil, microbes, plants, and animals. Most bioretention systems function as isolated patches of various shapes and sizes surrounded by impervious surface. A significant body of ecological theory has been developed that addresses the relationships among species composition, diversity, and ecosystem function, and how these vary with spatial structure. Here we highlight how such theories may be applied to improve the efficiency or effectiveness of bioretention systems. We consider (1) the role of plant and animal species that function as ecosystem engineers, (2) biodiversity-ecosystem function relationships, (3) complexity and stability, (4) disturbance and succession, and (5) spatial theory. Future testing of the utility of these theories may occur through incorporation of experiments into the design of bioretention systems or through meta-analysis of systems that span a range of configurations and biotic features
    • …
    corecore