28 research outputs found

    Run-Time Monitoring of Timing Constraints: A Survey of Methods and Tools

    Get PDF
    Abstract-Despite the availability of static analysis methods to achieve a correct-by-construction design for different systems in terms of timing behavior, violations of timing constraints can still occur at run-time due to different reasons. The aim of monitoring of system performance with respect to the timing constraints is to detect the violations of timing specifications, or to predict them based on the current system performance data. Considerable work has been dedicated to suggesting efficient performance monitoring approaches during the past years. This paper presents a survey and classification of those approaches in order to help researchers gain a better view over different methods and developments in monitoring of timing behavior of systems. Classifications of the mentioned approaches are given based on different items that are seen as important in developing a monitoring system, i.e., the use of additional hardware, the data collection approach, etc. Moreover, a description of how these different methods work is presented in this paper along with the advantages and downsides of each of them

    Uml-based modeling of non-functional requirements in telecommunication systems. In:

    Get PDF
    Abstract-Successful design of real-time embedded systems relies heavily on the successful satisfaction of their non-functional requirements. Model-driven engineering is a promising approach for coping with the design complexity of embedded systems. However, when it comes to modeling non-functional requirements and covering specific aspects of different domains and types of embedded systems, general modeling languages for real-time embedded systems may not be able to cover all of these aspects. One solution is to use a combination of modeling languages for modeling different non-functional requirements as is done in the definition of EAST-ADL modeling language for automotive domain. In this paper, we propose a UML-based solution, consisting of different modeling languages, to model non-functional requirements in telecommunication domain, and discuss different challenges and issues in the design of telecommunication systems that are related to these requirements

    Satisfying Non-Functional Requirements in Model-Driven Development of Real-Time Embedded Systems

    No full text
    Design of real-time embedded systems is a complex and challenging task. Part of this complexity originates from their limited resources which incurs handling a big range of Non-Functional Requirements (NFRs). Therefore, satisfaction of NFRs plays an important role in the correctness of the design of these systems. Model-driven development has the potential to reduce the design complexity of real-time embedded systems by increasing the abstraction level, enabling analysis at earlier phases of development and code generation. In this thesis, we identify some of the challenges that exist in model-driven development of real-time embedded systems with respect to NFRs, and provide techniques and solutions that aim to help with the satisfaction of NFRs. Our end goal is to ensure that the set of NFRs defined for a system is not violated at runtime. First, we identify and highlight the challenges of modeling NFRs in telecommunication systems and discuss the application of a UML-based approach for modeling them. Since NFRs have dependencies, and the design decisions to satisfy them cannot be considered in isolation, we propose a model-based approach for trade-off analysis of NFRs to help with the comparison of different design models with respect to the satisfaction level of their NFRs. Following the issue of evaluating the interdependencies of NFRs, we also propose solutions for establishing and maintaining balance between different NFRs. In this regard, we categorize our suggested solutions into static and dynamic. The former refers to a static design and set of features which ensures and guarantees the balance of NFRs, while the latter means establishing balance at runtime by reconfiguring the system and runtime adaptation. Finally, we discuss the role of the execution platform in preservation and monitoring of timing properties in real-time embedded systems and propose an approach to enrich the platform with necessary mechanisms for monitoring them.CHES

    Preservation of Extra-Functional Properties in Embedded Systems Development

    No full text
    The interaction of embedded systems with their environments and their resource limitations make it important to take into account properties such as timing, security, and resource consumption in designing such systems. These so-called Extra-Functional Properties (EFPs) capture and describe the quality and characteristics of a system, and they need to be taken into account from early phases of development and throughout the system's lifecycle. An important challenge in this context is to ensure that the EFPs that are defined at early design phases are actually preserved throughout detailed design phases as well as during the execution of the system on its platform. In this thesis, we provide solutions to help with the preservation of EFPs; targeting both system design phases and system execution on the platform. Starting from requirements, which form the constraints of EFPs, we propose an approach for modeling Non-Functional Requirements (NFRs) and evaluating different design alternatives with respect to the satisfaction of the NFRs. Considering the relationship and trade-off among EFPs, an approach for balancing timing versus security properties is introduced. Our approach enables balancing in two ways: in a static way resulting in a fixed set of components in the design model that are analyzed and thus verified to be balanced with respect to the timing and security properties, and also in a dynamic way during the execution of the system through runtime adaptation. Considering the role of the platform in preservation of EFPs and mitigating possible violations of them, an approach is suggested to enrich the platform with necessary mechanisms to enable monitoring and enforcement of timing properties. In the thesis, we also identify and demonstrate the issues related to accuracy in monitoring EFPs, how accuracy can affect the decisions that are made based on the collected information, and propose a technique to tackle this problem. As another contribution, we also show how runtime monitoring information collected about EFPs can be used to fine-tune design models until a desired set of EFPs are achieved. We have also developed a testing framework which enables automatic generation of test cases in order verify the actual behavior of a system against its desired behavior. On a high level, the contributions of the thesis are thus twofold: proposing methods and techniques to 1) improve maintenance of EFPs within their correct range of values during system design, 2) identify and mitigate possible violations of EFPs at runtime.CHESSMBATITS-EAS

    Towards Automating Integration Testing of .NET Applications using Roslyn

    No full text
    The increasing complexity and size of software products combined with pressure to have shorter time-to-market is making manual testing techniques too costly and unscalable. This is particularly observed in industrial systems where continuous integration and deployment are applied. Therefore, there is a growing need to automate the testing process and make it scalable with respect to the context of real-world and large industrial applications. While there are already some solutions for generation of unit level test cases, automatic generation of integration level test cases to verify interaction of software components poses specific challenges especially in object-oriented applications. In this paper, we describe our ongoing work in introducing a solution to automate generation of integration test cases for C# applications by exploiting the code analysis capabilities of Microsoft .NET compiler platform known as Roslyn. This is done in collaboration with ABB Industrial Automation Control Technologies (IACT) in Västerås-Sweden, where the software for 800xA distributed control system is developed
    corecore