
Run-Time Monitoring of Timing Constraints: A
Survey of Methods and Tools

Nima Asadi, Mehrdad Saadatmand, Mikael Sjödin
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University, Västerås, Sweden
nai10001@student.mdh.se, {mehrdad.saadatmand, mikael.sjodin}@mdh.se

Abstract—Despite the availability of static analysis methods to
achieve a correct-by-construction design for different systems in
terms of timing behavior, violations of timing constraints can
still occur at run-time due to different reasons. The aim of
monitoring of system performance with respect to the timing
constraints is to detect the violations of timing specifications, or
to predict them based on the current system performance data.
Considerable work has been dedicated to suggesting efficient
performance monitoring approaches during the past years. This
paper presents a survey and classification of those approaches
in order to help researchers gain a better view over different
methods and developments in monitoring of timing behavior of
systems. Classifications of the mentioned approaches are given
based on different items that are seen as important in developing
a monitoring system, i.e., the use of additional hardware, the data
collection approach, etc. Moreover, a description of how these
different methods work is presented in this paper along with the
advantages and downsides of each of them.

Index Terms—Runtime Monitoring; Extra-Functional Proper-
ties; Real-Time; Timing; Survey.

I. INTRODUCTION

The number of computer systems used in our daily life
and embedded as part of other systems, such as automobiles,
microwave ovens, TV sets, etc., is exponentially growing. The
interaction of such embedded systems with their surround-
ing environments (e.g., through sensors and actuators) often
brings along timing requirements. Criticality of these timing
requirements, of course, can vary from system to system
and under different usage scenarios and situations. Therefore,
ensuring that a system respects the timing requirements and
operates within the timing constraints defined for it is of great
importance and can even determine the success or failure of
a computer system (e.g., the airbag system in a car).

While the goal of verification and validation techniques,
such as testing, debugging, and theorem proving is to ensure
general correctness of programs, the intention of run-time
monitoring is to determine whether the current execution
meets the specified technical requirements [1]. To achieve this
goal, monitors collect the data of interest from the monitored
systems, which can be used for further analysis by the user,
or the monitor itself.

Timing behavior monitors provide the user with necessary
information which can be used to detect or predict violations
of timing constraints. Examples of such information are dead-
line misses and context switches. Many system performance

monitoring tools have been developed. However, many of these
monitors focus on different aspects of a system performance
other than the timing behavior of the system, such as inter-
process communications and/or access to shared memory
resources. On the other hand, some of the methods used in
such monitors are useful in timing performance data collection
and analysis as well. Thus, a part of the effort in this paper has
been dedicated to distinguishing and including those methods.

Various approaches were suggested in different areas, such
as monitoring, debug and replay, and data analysis and visual-
ization. However, the area covered in those studies has mostly
been software-fault monitoring in general, i.e., monitors that
are used to detect any sort of software fault. The focus in
this paper is tried to be on approaches used for monitoring
of timing constraints. The data that such monitors provide
is especially very important for prediction and analysis of
the performance of systems in real-time environment. Our
goal is to provide the researchers and developers with a good
insight to software monitoring approaches with a focus on
timing constraints violation detection. To achieve this goal, an
overview of the methods as well as an introduction to the used
concepts and definitions is presented. The approaches covered
in this study are tried to be a representative sample of timing
constraints performance monitoring tools and relative studies.

The organization of this paper is as follows. Section 2
presents a background of the topic as well as the definitions of
concepts used in this paper. Section 3 describes the methods
used in selecting the monitoring approaches and a brief review
of related work. Section 4 discusses the methods, the goal they
try to achieve, and the advantages and disadvantages of each
method. Section 5 summarizes the survey. The concluding
remarks and the future work are given in Section 6.

II. DEFINITIONS AND BACKGROUND

Real-time systems are those systems in which the correct-
ness of the system depends not only on the logical results
of computations, but also on the time at which the results
are produced [2]. Although significant work has been done
to suggest a method that guarantees the execution of tasks
within their pre-specified timing constraints, deadline violation
can still happen due to different reasons, such as the unpre-
dictability of the system environment and external signals, and
the inability to satisfy all design requirements [3]. Software
verification methods are used to make sure that the system

391Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357305559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

meets its general requirements. However, despite the contri-
butions of common verification methods and improvements in
real-time scheduling, the need to perform run-time monitoring
of these systems is not diminished due to the complexity of
these systems and the unpredictability in dealing with the
external environment [3]. Therefore, a monitoring tool can be
helpful for detecting violations of those timing constraints by
collecting, and analysing (depending on the facilities provided
by the monitor) relevant system performance data.

According to Peters [4], a monitor is a tool that observes
the behavior of a system and determines if it is consistent with
a given specification. We decided to use Peters’ definition of
a monitor, because it covers different categories of monitoring
systems. The system in which monitoring, run-time checking,
or run-time verification is performed is referred as the ’target
system’, and the software application whose execution is being
monitored is referred to as the ’target application’. The data
detected by various monitors can be different. In this paper,
our focus is on the data that can be used in analysis of
timing behavior of different types of target systems, such as
distributed systems, multiprocessor systems, and embedded
systems, or information that can help detecting such data. Most
of such monitors focus on detecting events of interest. An
event is usually a state change in the target application.

1) Latency and interference: Event detection and process-
ing can be performed in different ways, each of them causing
a different amount of interference with the target system. The
best solution for monitoring with respect to interference is a
monitor that uses extra hardware to be able to detect events
without affecting the activities of the monitored system. Such
tools are usually referred as hardware monitors. Run-time
monitoring without interference to the target system is usually
accomplished by passively monitoring the target processor’s
data, address, and control buses [5]. Passive monitoring is a
term used for a type of monitoring that does not affect the
target system’s performance. However, many state changes of
the software being monitored are not reflected by probes that
are created in data collection lines in the added monitoring
hardware. Probes are basically elements of a monitoring sys-
tem which are attached to the target system in order to collect
information about its internal operation. If the internal state of
the system context needs to be thoroughly known to make us
able to detect an event, a monitoring tool which does not use
extra hardware, called software monitor, is needed. However,
implementing a software monitor needs modification on the
target system kernel code, which can alter the behavior of it. To
overcome this problem, a hybrid monitoring approach could be
used. However, this approach that combines the hardware and
software monitoring architecture suffers from the same limi-
tations as the hardware monitoring approach. Besides that, the
observations will be on a low amount of detail. In order to test
and debug a system at satisfactory levels of reliability we need
to observe the system completely. We can observe significantly
more than it is possible with hardware monitoring approaches
by including instrumentation code in the monitored software
(application and kernel). Thus, for most application domains,

pure software monitoring seems to be the better solution. This
can be done by inserting small code stretches in the target
program in order to detect events of interest. Different from
hardware monitoring systems, software monitoring systems
are easier to change. Besides that, the flexibility (modifiability)
of software monitoring approach makes it possible to provide
more information to programmers and in general, to provide
information in a more useful form [5].

As mentioned, including the monitoring code in the target
software has the disadvantage of changing its behavior because
of the amount of latency being added to it. This is because a
part of the CPU time should be dedicated to the monitoring
code. This latency is referred as probe effect.

As for the use of the monitoring results, monitors have to
choose between a low latency and a small rate of evaluations.
Because evaluating a big amount of collected data can increase
the latency in the system. The amount of latency usually de-
pends on the focus of monitoring tool and methods. Monitors
that only gather data for later use can usually cope with a
large latency, whereas monitors that control the monitored
system based on the results of evaluations will require a low
latency [6].

2) Tracing and Sampling: Data collection can happen in
two ways: tracing and sampling. In tracing, every occurrence
of an event creates a record. So event tracing is characterized
by the completeness of knowledge [7]. Sampling yields only
a statistical measure of the software’s execution patterns. It
is not precise: if an event does not occur in a sampling log,
there is no guarantee that it did not occur in execution. This
means that sampling may not be able to detect frequently
executed routines whose execution times are smaller than the
sampling frequency. However, significantly less time needs to
be spent to achieve sampling than to instrument the software
system for tracing [7]. Also, the data volume associated
with event tracing can be very large. Regarding interference
and target behavior change, both event tracing and sampling
may affect the performance of the software system. In some
literature, tracing is mentioned as event-driven monitoring
whereas sampling is called time-driven monitoring.

III. SURVEY METHODOLOGY

Many run-time monitoring methods have been developed in
the past. These methods serve different goals by gathering data
of interest from different aspects of systems. Thus, the effort
of this paper is to provide an informative categorization of the
monitoring tools based on these differences. In this section,
the motivation behind this survey and the methods used for
the survey are discussed.

A. Objectives of this survey

With ever increasing use of real-time systems, the reliability
of such systems seems more and more crucial. In order
to make sure that the real-time characteristic of the system
is preserved, many techniques for run-time monitoring and
debugging of these systems have been developed. In general,
monitoring supports the debugging, testing, and performance

392Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

evaluation of the programs, and covers different aspects of sys-
tem’s behavior, such as memory usage, CPU usage, network
and connections status, and tracing of the execution of the pro-
cesses in the system. Monitoring of timing constraints focuses
on the timing behavior of the processes in the system. The
main goal in monitoring in this area is to make sure that the
real-time quality of the system is guaranteed, which basically
means that all the tasks are completed without missing their
deadlines. In order to have a solid vision of the performance
of a system regarding this quality, it is important that the
monitor can provide the data needed for the analysis of timing
behavior of the system. The goal of this work is to present an
overview of the architecture and workflow of monitors which
can be used for timing analysis. A few surveys have been
done on run-time monitoring. Moreover, some of the existing
works, such as the work of Delgado et al. [1], have tried to
cover a wider range of run-time monitors. We tried to narrow
down our survey to the monitors whose data can be used in
timing analysis of systems. Also, many of the methods covered
in this work are not covered in the work of Delgado. The
approaches covered in this work are representative samples of
such monitoring tools. The categorization that is brought in
the summary section is based on the design and architecture
of the monitors, the services they provide for the user, and
their other important features. Furthermore, the positive and
negative points of each method are presented along with the
explanation of them to help the readers gain a better vision
about them.

B. Related Work

A close work to our work is the taxonomy of run-time
software fault monitoring by Delgado et al. [1]. In that work, a
classification of tools that monitor software faults is presented.
Reinhard Wilhelm et al. [8] discuss the issues in Worst-Case
Execution Time (WCET) analysis and review the common
suggested tools for this purpose. They divided the tools into
two main categories: static methods and measurement based
methods. Another survey related to monitoring of system
performance is the work of Henrik Thane [9]. Besides an
explanation of common concepts and terminologies in per-
formance monitoring, he provides a short review of some
of the suggested monitoring methods. In that work, monitors
are classified as hardware monitors, software monitors, and
hybrid monitors, which are a combination of the first two.
A bibliography of the works on performance evaluation was
presented by Agajanian in 1975 [10]. Gu et al. provide a
review on the literature on monitoring and debugging in
their annotated bibliography [11]. They divide their work into
four section including modeling and design of the systems,
data collection, analysis of the collected data, and dynamic
performance controlling. Also, a number of bibliographies
of parallel debugging tools were presented by Pancake et
al. [12] [13] [14].

C. Review Method

Certain literature review guidelines and approaches were
taken into consideration to choose the papers that cover our
topic of interest. The application of those approaches is only
briefly explained in this section due to space limitations.

a) Inclusion and exclusion criteria: Studies that pre-
sented data about software monitoring or performance eval-
uation were included in the paper data base. The outcome of
the studies was not considered in the inclusion criteria. Papers
that were published up to 2012 were included in this survey.

b) Search Strategy: The main resources we used to ac-
cess the papers of interest include the following: ACM Digital
Library, IEEE Xplore, ScienceDirect Elsevier, SpringerLink.
The main keywords that we used for searching include:
Monitoring AND run-time AND software, Performance evalu-
ation AND run -time AND software, Performance Evaluation
AND real time AND WCET, Analysis AND run-time AND
software, Analysis AND Linux AND run -time, Analysis AND
timing constraints. Apart from these main ones, OR combina-
tion of some of these keywords were tried and executed as
well.

c) Using Citation for Inclusion: Finding the papers that
cited a specific paper was the first step of this strategy.
Among the papers that were found this way, a number of
them were selected according to their relevance to our topic
of interest. Specifically, the papers that were about monitoring
of irrelevant systems were removed from our survey. For
indicating if a paper was relevant or not the whole paper was
skimmed or read, because the abstracts would not always give
information on whether the paper presented empirical results
or not. Another strategy in citation management was to search
for the papers cited in the related work section of studied
papers. The same relevance check criteria went on for those
studies as well.

IV. OVERVIEW OF THE METHODS

This part presents an overview of the architecture and design
of the suggested approaches for the monitoring of system
performance regarding to timing constraints. The aspect of
monitoring that each work aims to improve or resolve is also
stated. Moreover, some of the Pros and Cons of each suggested
solution are presented at the end of each section.

A. Non-interference method

1) Objective: to provide a monitoring and debugging sys-
tem that ensures minimum intervention with the execution of
the target system.

2) Approach: The monitor architecture consists of two
main parts: the interface module, and the development mod-
ule [15]. The interface module’s major duty is to latch the
internal states of the target system based on predefined condi-
tions set by the user. The responsibility of the development
module, which contains a general purpose microprocessor,
is to start the monitoring process, to record the target node
execution history, and to perform analysis on the recorded
data. After being connected to a node of the target system

393Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

and initialized, the interface module keeps collecting events
of interest until it finds a stop condition, pre-specified by the
user. Then an interrupt is sent to the monitoring processor to
separate it from the target processor for the data recording
process to take place. The recorded information is transferred
to a secondary storage for further processing. The events of
interest include process-level events. During the monitoring,
the time at which each event happens is recorded. Using this
timing information, the execution history can be examined
against timing constraint requirements. If violations are found,
the replay mechanism can be used to test the program behavior
again in order to isolate the errors.

3) Advantages: The monitor imposes low interference to
the target system. Also, the start and stop conditions can be
planned by the user, which makes this method more flexible.

4) Disadvantages: Generating an interrupt for every event
occurrence imposes unpredictable interference to the target
system. However, this is the only interference of the mon-
itor with the target system. There is no guarantee that the
microprocessor buses of the future will have the properties
required to support bus snooping [16], a technique to achieve
cash coherence in distributed systems that this type of monitors
rely on.

B. PASM
1) Objective: Suggesting a monitor with a flexible specifi-

cation language to provide the user with automatically defined
process-level events to associate them with actions to be taken
by a hardware monitoring system.

2) Approach: PASM citeLumpp1 [17] is a programmable
hardware monitor, which provides a flexible set of tools for
the user to specify events for a wide variety of monitoring
applications. The user can include a monitoring section with
the application that defines events of interest, actions to be
executed upon detection of those events, and the binding of
events to actions. This section is then used by the compiler to
automatically implement the instrumentation. Events in this
monitor are associated with changes of state of the active
process. An action can be recording the time of the occurrence
of an event to track the timing behavior, or printing of the
contents of some internal data structures when a certain point
in the execution is reached.

3) Advantages: The programmer has the freedom to define
many types of events as functions of the monitored data,
and actions corresponding to them. The monitor imposes low
interference with the target system. Manual instrumentation
is however hard, time-consuming and prone to error, so the
automatic instrumentation suggested in this approach removes
this problem.

4) Disadvantages: parts of the code, which were affected
by the monitoring sections, need to be recompiled when the
programmer wants to modify the probes.

C. ART Real-Time Monitor
1) Objective: The objective of ART Real-Time Monitor is

to visualize the system’s internal behavior with lowest amount
of change in its timing behavior.

2) Approach: This monitoring system was developed
for ARTS, a distributed operating system developed in
1980 [18] [19] [20]. This approach focuses on visualizing the
timing behavior of the system processes. Rate monotonic and
deferrable server algorithms are supported by this monitor,
and the monitoring task is performed as a part of the target
system. The functional structure of the monitoring system
can be divided in to three major parts: a part of the target
operational system code that records the information of interest
about the processes, called event trap, the reporter, which sends
the information to the visualizer, and the visualizer, that uses
the resources sent from the target system to create historical
diagrams of the scheduling decisions of the target system.

An event is generated each time the state of a process
is changed. The ARTS monitor records process-level events
such as process-creating, waking-up, blocking, scheduling,
freezing, killing with completion, killing with missed deadline,
and killing with frame overrun [18]. For monitoring timing
constraints, the monitor uses the facilities that the ARTS
kernel provides, such as ’Time fence’. The ’time fence’ is a
mechanism in the ARTS Kernel used to detect a timing error
at run-time. Before each operation invocation the time fence is
checked to verify that the slack time is bigger than the worst
case execution time of the invoked operation, and a timer is
set. If the execution is not completed within the worst case
time, the timer announces an anomaly.

3) Advantages: The integrated scheduler uses rate mono-
tonic scheduling for periodic hard real-time tasks and de-
ferrable server for aperiodic soft real-time tasks. Also, separa-
tion between the reporter and the Visualizer makes the monitor
suitable for embedded systems.

4) Disadvantages: interactive debugging of real-time sys-
tems without deterministic replay is not enough for removing
errors because debugging commands can damage the timing-
dependent nature of real-time systems [21]. Also, the monitor
needs extra kernel support from ARTS, which makes it inva-
sive. If the target system does not provide sufficient resources,
the monitoring capability will be limited, consequently, thus,
a hybrid approach which uses extra hardware might be neces-
sary.

D. Hmon

1) Objective: To design a transparent monitoring system
with continuous data collection facility for HARTS distributed
system.

2) Approach: Hmon [21] was developed to monitor the
performance of the Hexagonal Architecture for Real-Time
Systems (HARTS), a distributed real-time system. The area
this monitor covers include monitoring interrupts and shared
memory as well as the calls that the users can use in order to
monitor the processes that are not covered by the monitor. The
monitoring is done by including the monitoring code in the
existing system call libraries, meaning that no inside kernel
changes are necessary. Context switch events are detected via
a hook provided by the pSOS kernel. Task scheduling and
CPU usage are determined by studying the order and timing of

394Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

these events. Also, process management calls, such as process
creation and deletion, and time management calls that set or
read the clock are recorded to obtain their real-time properties.

3) Advantages: the monitoring is performed transparently,
so the programmer does not need to add special code to
applications. Also, some system hardware is dedicated to the
monitor to minimize interference with the measured system,
but no special hardware is required. The system is intended
for general-purpose real-time multiprocessors.

4) Disadvantages: data collection code interferes with the
system being monitored, and can change the system behavior.

E. Halsall-Hui

1) Objective: to design an interactive monitoring tool for
system and application level monitoring that is suitable for
embedded systems.

2) Approach: This monitor is designed to gather the data
from each processing node of a real-time embedded system
which is based on a distributed architecture [22]. The recorded
information from each node includes the IDs of the tasks and
processes, the type of the tasks and the system calls, and the
time that those events happen [22]. The event data recording
can take place in two ways. In the first method, the user inserts
a library function call, with the corresponding variable name
as a parameter, at the appropriate point in the source code, so
that whenever that code section is being executed the recording
function is called and run. Each of these functions can record
a specified event. The event data is then sent to the single
monitor of that node, which is also a library function. In the
second method, an interrupt is used to periodically refer to a
data table provided by the user, which includes event identities,
the recording frequency, and the variables to be recorded. This
event information is saved in a system file, or an application
file, which is downloaded to the monitored system later.

3) Advantages: The method allows application-specific
events to be monitored and analysed. The monitor is modi-
fiable, and the monitor interference does not change during
replay, which makes the timing behavior of the target system
more predictable

4) Disadvantages: This method is invasive and not ap-
propriate real-time systems because of its high amount of
interference.

F. Hybrid Monitor

1) Objective: To design a monitor that combines the
flexibility of software methods and non-interference of the
hardware methods.

2) Approach: This monitor is designed by combining
hardware monitors and software monitors [23]. A Test and
Measurement Processor (TMP) is integrated to each node
of the distributed system in order to record their process
and intercommunication activities. The main principle of this
method is that the target system generates events of interest,
and the TMP hardware processes and time stamps them [23].
The collected event data is stored in a FIFO memory in the
CPU. Every time an event is sent into the FIFO buffer the

CPU of the TMP is notified by an interrupt activating the
processing of the events data. The number of messages, the
message length, failed messages, the system time (the time
spent for the processes in kernel), and the application time
(the time that application processes spend in kernel minus
the system time) can be measured using this monitor as well.
Events are time stamped locally in this method.

3) Advantages: This method is transparent, i.e., it does
not change the behavior of the system, thus the monitoring
is continuous. It also uses hardware support to have a low
overhead for typical applications. Also, the graphical rep-
resentation helps better understanding of the recorded data.
Furthermore, since the TMPs communicate via their own
network, the communication disturbance to the host system
is lowered. Another positive point about this tool is that users
can load their own evaluation software instead of the default
TMP analysis software.

4) Disadvantages: Obtaining hybrid schemes is generally
hard. One reason is a lack of architectural support for the
monitoring hardware. Standard interfaces are needed to gen-
erate industry participation and allow instrumentation porta-
bility [24]. Although the analysis part can be changed, till
this tool is not flexible for manipulation by the user(for
example event detection and type of data being recorded
are not decidable). The overhead, although claimed to be
small according to the implementation for typical applications
(0.1%), is not negligible for real time applications.

G. ZM4

1) Objective: To develop a hardware event driven monitor-
ing tool for parallel and distributed systems.

2) Approach: In this approach, a hardware system called
ZM4 , and an event trace processing software called SIMPLE,
which works independently from the monitor, are devel-
oped [25]. The connection between the hardware and the
monitored system is local area network type. Hosting the
monitoring system, storing the measured data, and presenting
an analysis interface for the users are the responsibilities of
the control and evaluation center (CEC) of the ZM4 system.
Also, a number of monitor agents are built as slaves for the
CEC. Each monitor agent is connected to a target system
node. Another responsibility of these probes is time stamping
and recording of the events. Time stamping is done using a
global clock with the precision of 100 ns. SIMPLE, which
works on Linux and MS-DOS, is an evaluation environment
used for analyzing the recorded event traces. It generates a
global view of the distributed system’s behavior and performs
trace validation and analysis as well. Whenever the monitor
recognizes an event, it stores an event record which consists
of event token and a time stamp. The sequence of events is
stored as an event Truce [25].

3) Advantages: Distributed hardware monitor ZM4 can be
adapted to arbitrary target systems. The combination of event-
driven monitoring and event-based modeling makes program
instrumentation and validation systematic.

395Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

4) Disadvantages: Reliance on event driven monitoring and
instrumentation is limited to limit the impact on the target
system.

H. Trams

1) Objective: To design a hybrid monitoring method for the
performance measurement in both tightly and loosely coupled
multiprocessors.

2) Approach: The architecture of this system consists of a
software for event triggering, by inserting Write command in
the code, and a hardware subsystem used to sample the time
and identity of the CPU [26].

For the hardware part, a measurement node consists of a
set of VLSI chips with two IC chip types: the Trams (Trace
Measurement System) and the Rems (Resource Measurement
System). The data written by the user, along with the CPU
identification and the time stamp are stored in the Trams sam-
ple memory. The sample memory then reads this information
for further analysis. Rems is used for data sampling. The target
distributed system can be tightly coupled or loosely coupled. In
the first system a single node can be used in a centralized event
trace collection, and in the second architecture model each
node can be connected to a corresponding processor. Both the
Trams and Rems contain three sections: a data capture system,
an output, and a FIFO buffer.

3) Advantages: Both loosely coupled and tightly coupled
systems are covered in this approach. As a special feature,
event counters are implemented in one of the VLSI chips
in order to reduce the amount of data to be transferred and
evaluated [26].

4) Disadvantages: The monitoring tool is system specific,
and it makes it easy to generate so much data that it swamps
any file system or data analysis station [27].

I. Alamo

1) Objective: A method to reduce development costs for a
broad class of execution monitors.

2) Approach: Lightweight Architecture for Monitoring
(Alamo) [28] [29] [30] is an event-driven monitor developed
for C programs, and uses the Icon programming language to
specify assertions. The Alamo monitoring architecture utilizes
CCI, a Configurable C Instrumentation tool as a preprocessor
that uses parse trees to identify monitoring points and inserts
events into the target program source code. The architecture
of this monitor consists of: (1) an automatic instrumentation
mechanism, (2) an execution model, (3) abstractions for event,
selection, multiplexing and composition, and (4) an access
library that allows monitors to directly manipulate target
program state. Alamo employs automatic program instrumen-
tation to produce target program events for the monitor. The
Execution Monitor (EM) executes the Target Program (TP) and
then returns control with information in the form of an event
report. The user can apply a predicate to each event report to
make monitoring more specific, or view detailed information
through Alamo’s visualization mechanism.

3) Advantages: The Alamo monitor architecture signif-
icantly reduces the development cost of writing program
execution monitors

4) Disadvantages: There is no support for real-time or
shared-memory multiprocessor-based parallel applications.
Not all execution monitors can be written using an Alamo-
based framework; those that, cannot tolerate intrusion of
instrumentation code require a two-process model such as that
employed by standard source-level debuggers [31].

J. MAC

1) Objective: To propose a tool that complements testing
(infeasible to completely test the entire system due to the large
number of possible behaviors), and verification (possibilities
for introduction of errors into an implementation of a design
that has been verified) techniques.

2) Approach: Monitoring and Checking
(MAC) [32], [33], [34], [35], [36], [37] provides a framework
for runtime monitoring of real-time systems written in Java.
The MAC architecture consists of three main components:
a filter, and event recognizer, and a run-time checker. The
filter, which maintains a table containing names of monitored
variables and addresses, extracts low-level information, time
stamps it, puts it in a message, and sends it to the event
recognizer. From this low level data, the event recognizer
detects the occurrence of abstract requirement level events
based on the Requirement specifications written in Meta
Event Definition Language (MEDL), and informs the run-time
checker about them. The run-time checker uses these events
to see if the current system execution conforms with the
requirements of the system. An event is an instantaneous
state change. Static analysis is used to determine monitoring
points, which are inserted automatically.

3) Advantages: The filter (that extracts the information of
interest) is separated from the event recognizer, so that system
execution does not suffer from the overhead of abstracting
out events from low-level information. This architecture is
also appropriate for monitoring distributed systems where each
module is able to have a corresponding filter.

4) Disadvantages: This architecture adds to the communi-
cation overhead because the filter sends the data to the event
recognizer. the executing software needs to send enough state
information to observer process, in order to check constraints
and do analysis. When violation of the constraints happens, ob-
server process cannot stop the execution of the software.(there
is no feedback to the system), but this is feature is added in
MACS, a later work [33].

K. PMMS

1) Objective: To minimize the total time between formula-
tion of the questions (what the monitor should do) and delivery
of the answers. The second is to minimize the monitoring
overhead during execution.

2) Approach: Program Monitoring and Measuring System
(PMMS) [38]. is a monitoring approach that automatically col-
lects high level information about the execution characteristics

396Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

of a program. Data collection is done by code inserted into the
source program of the target system, and conditions are used
to filter out events that are not relevant. The monitor handles
events of interest by installing code that reacts whenever they
occur. This data collection code includes Pre-condition (rele-
vance test), Local-variables (used to store local data), Before-
code (code to collect data available before the event), After-
code (code to collect data after the event), Post-condition(a
relevance test based on data that is available after the event),
and Action(code that stores data more permanently for later
use) [38]. Examples of recorded event data include the time at
which the event occurs, the value of program variables at that
time, etc. The user can specify all the objects and relations
using the high level specification language that is provided in
this method. The PMMS uses a main memory for the active
database to facilitate the collection, computation, and access
to the computation results.

3) Advantages: The used specification language in this
work allow security engineers to write a centralized policy
specification; the systems then uses a tool to automatically
insert code into untrusted target applications. This centralized
policy architecture makes reasoning about policies a simpler
and more modular task than the alternative approach of
scattering security checks throughout application or execution-
environment code. With a centralized policy, it is easy to
locate the policy-relevant code and analyze or update it in
isolation [39].

4) Disadvantages: Since the instrumentation code performs
database queries, instrumentation can significantly change the
performance of the target program.

L. JRTM

1) Objective: An approach for monitoring timing constraint
violations in real-time systems. The objective is to detect
timing violations as early as possible.

2) Approach: Java Runtime Timing-constraint Moni-
tor [40], [41] targets timing properties of distributed, real-time
systems written in Java. In this work, the necessary constraints
and event log are automatically derived by the compiler, and
then the compiled specification is loaded into the monitor at
run-time. Java programmers can insert the event triggering
method calls in their Java programs where event instances are
supposed to occur. At run-time, whenever an event method
is executed, the current system time is recorded as the event
occurrence time and this timestamp is sent to the monitor along
with the event name. The monitor keeps these event occurrence
messages in a sorted queue with the earliest event message
at the head of the queue. The event message at the head is
processed at an appropriate time to check it with the related
constraints. Once a violation of the specification is found, users
are notified. This monitor can run on the same machine as the
target process or on a standalone monitoring machine.

3) Advantages: Low overhead; it uses small size of event
record history depending on the maximum occurrence rate of
events.

4) Disadvantages: It is difficult to timestamp an event with
an accurate time point, which is assumed to be measured well
for JRTM to use.

M. GRTMon

1) Objective: To design a run-time monitor with small
probe effect, and no input missing (not for non-real-time
purposes).

2) Approach: Generalized Run-Time Monitor (GRT-
Mon) [42] is a tool for real-time systems to detect information
regarding timing constraints. In this method, data collected
by sensors is written to buffers from which monitors read.
Each buffer is mapped at the respective sensor section and all
associated monitor tasks. According to the work flow of this
monitor, data pairs of an output element and its timestamp are
the input to evaluation algorithms of the monitor. Monitors sort
the buffer output elements based on their timestamps before
evaluation. The CPU’s timestamp counter, which contains
the number of elapsed CPU cycles since the CPU has been
initialized is used by the sensor to tag the output with its
corresponding timestamp. A sensor directory is used to provide
relations between sensors and monitors. Thus, there is no
direct relation between sensors and the monitor, which can
be effective in decreasing the probe effect of the monitor. The
monitor can either run as a constant-bandwidth server with
a bandwidth that the user defines, or resource requirements
can be determined based on the sensors’ jitter-constrained
stream specifications [42]. Also, in GRTMon, monitors and the
target system communicate asynchronously, so the monitors
have less direct influence on the monitored system’s timing.
Examples of events of interest are context switches, inter-
process communication (IPC) or events in the kernel itself
such as calls to certain kernel functions.

3) Advantages: Using this method evaluation of events with
least amount of input data miss is guaranteed. Also, small set
of dependencies between the monitor and the target system
and sensors and the monitor decreases the overhead on the
target system.

4) Disadvantages: If more than one sensor is used the
overhead will increase significantly.

N. FKT

1) Objective: To design a simple software monitor for
Linux with lower interference which can support multipro-
cessor platform and networked environment.

2) Approach: Fast Kernel Tracing (FKT) [43] monitor is a
software tool designed to evaluate the performance of Linux
kernels running on Pentium PCs. This monitor is implemented
by modifying the Linux kernel through adding probes for
data collection, and user-level programs for data evaluation.
The probes are placed by the programmers. By default probes
are placed at the entry to and exit from every system call,
trap, interrupt, and process switch inside the kernel [43]. The
timing recorded by a probe is the time provided by the Intel
Pentium’s timestamp counter which is incremented on every
hardware clock cycle. The data recorded by the probe consists

397Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

of the time at which the data is recorded by the probe, a
unique identification code assigned to the probe, the ID of the
current process, the number of the processor, and additional
parameters provided by the programmer. The monitor has two
phases: recording, which happens during the run-time, and
analysis, which happens off-line. The analysis part can be
changed by the user for different types of evaluations. Also, the
information to be collected can be specified by the programmer
while inserting the probes.

3) Advantages: The probes can be turned on and off using
a key mask that is controlled by user-level programs, so that
the probing overhead is reduced when probes are not needed
to be used. Also, the amount of information recorded by each
probe is small, which means that big traces of operating system
execution can be recorded.

4) Disadvantages: This tool does not provide a run-time
analysis of data, so the user does not notice violation occur-
rence during the run-time. When the buffer is filled the probing
is suspended, which implies the use of a big buffer.

O. SoC-based Monitor

1) Objective: A runtime monitor within an embedded sys-
tem to detect timing specification violations

2) Approach: The System on Chip-based monitor [44] uses
a hybrid method for run-time verification of embedded sys-
tems. The monitor consists of event recognizer, a verification
tool, and the monitor output. The event recognizer decides
if the collected data is relevant to the event definition. After
passing this step, the event data is sent to verification section
where it is compared with the requirement constraints. In case
a violation is observed, it is sent to the output of the monitor.
The events detection code is inserted in the source code of the
target system, but no code is needed for transmitting the events
to the event recognizer. In fact, the event data is transmitted
from the target system to the event recognizer by a dedicated
monitoring core called ’event dispatcher’ [44].

3) Advantages: Low overhead due to use of extra hardware
for event dispatching. It benefits from a light design for
monitoring of embedded systems.

4) Disadvantages: Limited monitoring is available due to
the memory constraints of embedded systems. The monitor’s
performance is highly dependent to the target system hardware
specifications.

P. Raju-Jahanian

1) Objective: Early detection of violations of timing asser-
tions in an environment in which the real-time tasks run on
multiple processors

2) Approach: This monitoring tool consists of a set of
cooperating monitor processes one on each processor of the
target system [3]. Upon occurrence of an event, application
tasks on a processor inform the local monitor by putting the
event into a queue in shared memory. Then, a monitor process
decides whether the event must be communicated to other
monitors or not. The role of this monitor is to make sure the
violation is predicted as early as possible [45], by deciding if

the data is communicable or not using intermediate constraints.
The main idea behind this solution is that ’it is possible
that an implicit constraint is violated before an explicit delay
or deadline becomes unsatisfiable at run-time’ [45]. If the
occurrence time of an event has to be sent to a remote monitor,
the monitor puts the event and its local occurrence time into a
message and sends it to other monitor processes. If a message
arrives from a remote monitor or a timeout occurs, a monitor
checks if violation has occurred. If a violation is detected, it
notifies the application task (with termination as the default
action).

3) Advantages: The intermediate monitor makes early vi-
olation detection possible

4) Disadvantages: It uses Real-Time Logic specification
language (RTL) for constraints and event-action bonding,
which is rarely used in practice.

Q. OSE Monitor

1) Objective: To facilitate the possibility of monitoring of
timing behavior for OSE real time operating system.

2) Approach: The main idea behind this approach is to
add a second layer scheduler to the OSE (Operating System
Embedded) real-time operating system to make it easier to
query the execution result of real-time tasks [46]. This adjunct
scheduler uses the specifications of real-time tasks, such as
the period and execution time of each task, from a parameter
file. According to these parameters the second layer scheduler
schedules the tasks by allowing them to be sent to the core
scheduler in Earliest Deadline First(EDF) or Rate Monotonic
Scheduling (RMS) scheduling algorithms. Thus, it is clear
that the second layer scheduler process must have the highest
priority among all the OSE processes.

The monitor process works with the lowest priority, i.e., as
a background OSE process, in order to make sure that it does
not interfere with the scheduling process. Upon completion
of a task, the monitor receives a signal from the second
layer scheduler. Two types of log files are created in this
process: a scheduling log file, and a monitoring log file. The
scheduling log file, which is created by the second layer
scheduler, contains the time points at which a task in the task
set is scheduled, completed, or preempted. Monitoring log file,
which is created by the monitor, is updated only when an
instance of a task is completed [46].

3) Advantages: A very good set of timing information is
provided by the log files without further analysis processes,
which makes this tool very easy to use.

4) Disadvantages: Dynamic creation of tasks is not covered
in this method. The overhead of another scheduling layer on
the real-time system can be significant.

V. SUMMARY

A number of suggested tools were selected out of a big-
ger group of studies on system monitoring and performance
evaluation. As mentioned before, the focus of this paper
is on the tools and methods whose presented data can be
used for timing analysis of the system performance. Other

398Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE I
A CLASSIFICATION OF MONITORS

Approach Monitor Adaptibility Data Collection Design Method Development stage Target System
Specific General Tracing Sampling Hardware Software Hybrid Research Production Real-Time Embedded Distributed

Non-inter x x x x x x
PASM x x x x x
ART x x x x x

HMON x x x x x x
Halsall-Hui x x x x x x x x

Hybrid x x x x x
ZM4 x x x x x

Trams x x x x x
Alamo x x x x
MAC x x x x x
Pmms x x x x
JRTM x x x x x

GRTMon x x x x x
FKT x x x x

Soc-based x x x x x x
Raju-Jahanian x x x x x x
OSE monitor x x x x x

performance evaluation approaches such as debugging, testing,
and visualizing were not covered in this survey.

In this section, a classification of the reviewed tools is
provided in Table I. This classification is based on the features
that can be useful in giving the developers and researchers a
broad insight on different suggested approaches in designing
system performance monitors. These features were chosen in
order to satisfy the goal of facilitating the process of research
on run-time monitoring of timing properties for the readers.
A description of each classification element is provided in the
sections below

A. Monitor Adaptability
Depending on the design purpose, some of the monitoring

tools are developed for a specific target system. In many
cases, the architecture of such monitors is dependent to the
facilities that the target system provides. Monitors that are
not designed for a specific target system can provide the
developers the possibility of designing transparent monitoring
for target systems with basic facilities and source code in
any programming language. In our classification, ’General’
adaptability means that the monitoring method can be used for
different types of target systems. We chose the term ’specific’
for the tools that were developed for a specific target system,
or monitor programs in a specific programming language, and
is not not possible to be implemented for other systems.

B. Data Collection Method
An important task of any a run-time monitor is to collect the

data of interest from the monitored system when it is running.
Two types of data collection during the system execution are
sampling and tracing. A brief description of the two mentioned
methods was previously given.

C. Design Method
As explained in the prior sections, depending on the use

of extra hardware in the monitoring system, a monitor can be
hardware, software, or a combination of the two, called hybrid.
A description of the advantages and drawbacks of each type
is given in the previous sections.

D. Development Stage

While some of the covered methods were employed in
software production projects, thus are available tools, the
others are classified as research project prototype.

E. Target System

As mentioned in previous sections, the monitors covered
in this work are designed for different environments and
platforms of target systems ranging from embedded systems
to distributed and parallel systems. This section on the table
represents the type of target systems that the monitors were
designed for, or can be used for. Some monitors, such as FKT,
were designed for general-purpose systems.

VI. CONCLUSION

There is an increasing need in monitoring of timing behavior
in different types of computer systems. This is mainly because
of the growing importance of the issue of satisfying timing
constraints in many systems that are being used today, partic-
ularly embedded devices. A practical and reasonable method
for controlling a system’s timing behavior is through run-time
monitoring of timing in the system. In this paper, we provided
a survey of a selected group of works on monitoring of timing
constraints in different systems and contexts. The systems
in need of monitoring covered in this work ranged from
embedded systems to hard real-time and distributed systems.
Our main intention with this work has been more to gather ver-
satile monitoring contexts and methods than merely analyzing
monitoring methods targeted for a single specific context or
monitoring methods using the same design architecture (both
in terms of hardware or software implementation). For each
approach that was covered, a review of its work flow and
design of each was presented as well as their advantages,
drawbacks, and the problem each of them aim for. Then, a
short summary and a classification of the methods were offered
based on the each method’s architecture and other practical
features.

Software and hardware monitors have been developed to
tackle different monitoring needs and to enable collection of

399Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

data considering the interference of the monitor in the target
system’s performance, which is referred to as probe effect.
In this sense, hardware monitors try to minimize the interfer-
ence and performance penalty of monitoring, while software
monitors generally provide a more flexible and customizable
solution. Also, hybrid monitors have been designed as a com-
bination of the two mentioned architectures in order to resolve
their issues, and benefit from the advantages of each. However,
due to the complicated nature of timing behavior of systems,
and the increasing complexity of different systems, adaptation
and customization of existing methods may be required to
match the needs of different systems and contexts. Hence, this
paper’s effort in summary has been on giving system designers
and developers an organized insight toward the important
available experiences in this area. This is achieved by not only
describing different monitoring methods for different contexts,
but also providing a classification framework for them.

VII. ACKNOWLEDGEMENT

This work has been partially supported by the Swedish
Knowledge Foundation (KKS) through the ITS-EASY indus-
trial research school [47], and also by Combitech [48] and
Xdin [49] companies in Sweden.

REFERENCES

[1] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of
runtime software-fault monitoring tools,” IEEE Trans. Software Eng.,
pp. 859–872, December 2004.

[2] J. A. Stankovic and R. K., “What is predictability for realtime systems,”
Springer, November 1990.

[3] S. C. V. Raju and F. Jahanian, “Monitoring timing constraints in dis-
tributed real-time systems,” in Proc. Real-Time Systems Symp., vol. 30,
pp. 57–67, 1992.

[4] D. K. Peters and D. L. Parnas, “Requirements-based monitors for real-
time systems,” ISSTA ’00, ACM Press., December 2002.

[5] S. Ricardo and J. R. De Almeida, “Run-time monitoring for dependable
systems: an approach and a case study,” in in Proceedings of the 23rd
IEEE International Symposium on Reliable Distributed Systems (SRDS
2004), vol. 30, pp. 41–49, October 2004.

[6] T. Riegel, “A generalized approach to runtime monitoring for real-time
systems,” Master’s thesis, TU Dresden, 2005.

[7] E. Metz, R. Lencevicius, and T. F. Gonzalez, “Performance data collec-
tion using a hybrid approach,” in Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACMSIGSOFT in-
ternational symposium on Foundations of software engineering, vol. 30,
pp. 126–135, 2005.

[8] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom, “The worst case
executiontime problem, overview of methods and survey of tools,” Trans.
on Embedded Computing Sys., 2008.

[9] H. Thane, “Testing and debugging of distributed realtime systems,”
PhD Thesis, Mechatronics Laboratory, Royal Institute of Technology,
Stockholm, Sweden, May.

[10] A. H. Agajanian, “A bibliography on system performacne evaluation,”
Computer, November 2000.

[11] W. Gu, J. Vetter, and K. Schwan, “An annotated bibliography of
interactive program steering,” ACM SIGPLAN Notices, September 1994.

[12] S. Utter, C. M. Pancake, and K. Schwan, “A bibliographyof parallel
debuggers,” ACMSIGP1un Notices, pp. 29–42, November 1989.

[13] C. M. Pancake and S. Utter, “A bibliographyof parallel debuggers,”
ACMSIGP1un Notices, pp. 21–37, January 1991.

[14] C. M. Pancake and R. H. B. Netzer, “A bibliographyof parallel de-
buggers,” in Proc. of the 3rd ACM/ONR Workshop on Parallel and
Distributed Debugging, San Diego, CA, USA, May 1993.

[15] J. J. P. Tsai, K. Y. Fang, and H. Y. Chen, “A noninvasive architecture
to monitor real-time distributed systems,” Computer, pp. 11–23, March
1990.

[16] M. M. Gorlick, “The flight recorder: An architectural aid for system
monitoring,” in Proc. ACM/ONR Workshop Parallel and Distributed
Debugging, pp. 175–183, 1991.

[17] H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis, “An
overview of the pasm parallel processing system,” in Tutorial, Computer
Architecture, pp. 387–407, 1987.

[18] H. Tokuda, M. Kotera, and C. W. Mercer, “A real-time monitor for a
distributed real-time operating system,” in Proceedings of ACM SIGOPS
and SIGPLAN workshop on parallel and distributed debugging, May
1988.

[19] H. Tokuda and M. Kotera, “A real-time tool set for the arts kernel,”
in Proceedings of 9th IEEE Real-Time Systems Symposium, December
1988.

[20] H. Tokuda, M. Kotera, and C. W. Mercer, “An integrated time-driven
scheduler for the arts kernel,” in Proceedings of 8th IEEE Phoenix
Conference on Computers and Communications, March 1989.

[21] P. S. Dodd and C. V. Ravishankar, “Monitoring and debugging
distributed real-time programs,” Software Practice and Experience,
pp. 863–877, October 1992.

[22] F. Hasall and S. C. Hui, “Performance monitoring and evaluation of
large embedded systems,” Software Engineering Journal, pp. 184–192,
1987.

[23] D. Haban and D. Wybranietz, “A hybrid monitor for behavior and
performance analysis of distributed systems,” Software Engineering
Journal, IEEE Trans. Software Eng., pp. 197–211, February 1990.

[24] C. Alexander, “Multicomputer performance monitoring: a standards-
based approach,” Technical Report MSSU-EIRS-ERC-93-13 Mississippi
State University, December 1993.

[25] R. Hofmann, R. Kar, B. Mohr, A. Quick, and S. M., “Distributed
performance monitoring: Methods, tools, and applications,” IEEE
Trans.Parallel and Distributed Systems, 1994.

[26] A. Mink, R. Carpenter, G. Nacht, and J. Roberts, “Multiproces-
sor performance-measurement instrumentation,” Computer, pp. 63–75,
September 1990.

[27] J. K. Hollingsworth, B. P. Miller, and J. Cargille, “Dynamic program
instrumentation for scalable performance,” in Proc. Scalable High-
Performance Computing Conference, Knoxville, Tenn., pp. 841–850,
1994.

[28] C. L. Jeffery, “Program monitoring and visualization: An exploratory
approach,” Springer-Verlag, 1999.

[29] C. L. Jeffery New Mexico State Univ., Las Cruces, N.M., personal
comm., 2002.

[30] C. L. Jeffery, W. Zhou, K. Templer, and M. Brazell, “A lightweight
architecture for program execution monitoring,” in Proc. ACM SIG-
PLAN/SIGSOFT Workshop Program Analysis for Software Tools and
Eng., pp. 67–74, 1998.

[31] C. L. Jeffery, “The alamo execution monitor architecture,” Electronic
Notes in Theoretical Computer Science, 2000.

[32] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan, “Java-
mac: A run-time assurance tool for java programs,” in Proc. Fourth IEEE
Intl. High Assurance Systems Eng. Symp., pp. 115–132, 1999.

[33] M. Kim, I. Lee, and O. Sokolsky Univ. of Pennsylvania, Philadelphia,
personal comm., 2002.

[34] M. Kim and M. Viswanathan, “Mac: A framework for run-time correct-
ness assurance of real-time systems,” Technical Report MS-CIS-98-37,
Dept. of Computer and Information Sciences, Univ. of Pennsylvania,
December 1998.

[35] M. Kim and M. Viswanathan, “Formally specified monitoring of tem-
poral properties,” in Proc. European Conf. Real-Time Systems, 1999.

[36] I. Lee and H. Ben-Abdallah, “A monitoring and checking framework
for run-time correctness assurance,” in Proc. 1998 Korea-U.S. Technical
Conf. Strategic Technologies, 1998.

[37] I. Lee and M. Kim, “Runtime assurance based on formal specifications,”
in Proc. 1999 Int. Conf. Parallel and Distributed Processing Techniques
and Applications, 1999.

[38] Y. Liao and D. Cohen, “A specificational approach to high level program
monitoring and measuring,” IEEE Trans. Software Eng., pp. 969–978,
November 1992.

[39] J. Ligatti, “Policy enforcement via program monitoring,” Ph.D. thesis,
Princeton University, 2006.

400Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

[40] A. Mok and G. Liu, “Efficient run-time monitoring of timing con-
straints,” in Proc. Third IEEE Real-Time Technology and Applications
Symp., pp. 252–262, 1997.

[41] M. Moller, “Runtime assurance based on formal specifications,” Univ.
of Oldenburg, Oldenburg, Germany, personal comm., 2002.

[42] T. Riegel, “A generalized approach to runtime monitoring for real-time
systems,” Master’s thesis, TU Dresden, 2005.

[43] R. D. Russell and M. Chaven, “Fast kernel tracing: A performance
evaluation tool for linux,” in Proceedings of the 19th IASTED Interna-
tional Conference on Applied Informatics (AI 2001), Innsbruck, Austria,
February 2011.

[44] C. Watterson and D. Heffernan, “A monitoring approach to facilitate
run-time verification of software in deeply embedded systems,” Doctoral
thesis, University of Limerick, Ireland, March 2010.

[45] S. C. V. Raju, R. Rajkumar, and F. Jahanian, “Monitoring timing
constraints in distributed real-time systems,” in Proc. Real-Time Systems
Symp., pp. 57–67, 1992.

[46] M. Saadatmand, M. Sjodin, and N. Ul Mustafa, “Monitoring capabilities
of schedulers in model-driven development of real-time systems,” 17th
IEEE International Conference on Emerging Technologies & Factory
Automation (ETFA 2012), Sepember 2012.

[47] ITS-EASY post graduate industrial research school for embedded soft-
ware and systems. http://www.mrtc.mdh.se/projects/itseasy/, Accessed:
September 2013.

[48] Combitech. http://www.combitech.se//, Accessed: September 2013.
[49] XDIN AB. http://xdin.com/en/about-xdin/enea-experts/, Accessed:

September 2013.

401Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.mrtc.mdh.se/projects/itseasy/
http://www.combitech.se//
http://xdin.com/en/about-xdin/enea-experts/

	Introduction
	Definitions and Background
	Latency and interference
	Tracing and Sampling

	Survey Methodology
	Objectives of this survey
	Related Work
	Review Method

	Overview of the methods
	Non-interference method
	Objective
	Approach
	Advantages
	Disadvantages

	PASM
	Objective
	Approach
	Advantages
	Disadvantages

	ART Real-Time Monitor
	Objective
	Approach
	Advantages
	Disadvantages

	Hmon
	Objective
	Approach
	Advantages
	Disadvantages

	Halsall-Hui
	Objective
	Approach
	Advantages
	Disadvantages

	Hybrid Monitor
	Objective
	Approach
	Advantages
	Disadvantages

	ZM4
	Objective
	Approach
	Advantages
	Disadvantages

	Trams
	Objective
	Approach
	Advantages
	Disadvantages

	Alamo
	Objective
	Approach
	Advantages
	Disadvantages

	MAC
	Objective
	Approach
	Advantages
	Disadvantages

	PMMS
	Objective
	Approach
	Advantages
	Disadvantages

	JRTM
	Objective
	Approach
	Advantages
	Disadvantages

	GRTMon
	Objective
	Approach
	Advantages
	Disadvantages

	FKT
	Objective
	Approach
	Advantages
	Disadvantages

	SoC-based Monitor
	Objective
	Approach
	Advantages
	Disadvantages

	Raju-Jahanian
	Objective
	Approach
	Advantages
	Disadvantages

	OSE Monitor
	Objective
	Approach
	Advantages
	Disadvantages

	summary
	Monitor Adaptability
	Data Collection Method
	Design Method
	Development Stage
	Target System

	Conclusion
	Acknowledgement
	References

