38 research outputs found

    HAPLOIDENTICAL TRANSPLANT WITH POST-TRANSPLANT CYCLOPHOSPHAMIDE FOR ACUTE MYELOID LEUKAEMIA AND MYELODYSPLASTIC SYNDROMES PATIENTS: THE ROLE OF PREVIOUS LINES OF THERAPY.

    Get PDF
    Background: Allogeneic haematopoietic stem-cell transplant is a potentially curative option for high-risk acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) patients. Post-transplant cyclophosphamide administration allows for selection of haploidentical donors in patients who are eligible for the procedure, but do not have a fully matched donor, since it can overcome the HLA barrier. There is still an active debate on whether intensification of the conditioning regimen is necessary with haploidentical donors when peripheral blood stem cells are used as the source of the graft.   Herein we report our decennial experience of haploidentical stem-cell transplant using peripheral blood stem cells at King’s College Hospital. Objectives: The primary objective was to evaluate overall survival (OS) for patients with less than two previous lines of therapy. Secondary objectives were total OS, OS according to cytomegalovirus (CMV) reactivation, incidence of transplant-related mortality (TRM), graft-versus-host disease (GVHD) and GVHD-relapse-free survival (GRFS). Results: One-year and three-year total OS were 62% and 43%, respectively, with a median OS of 22 months. One-year and three-year OS for patients with ≤2 and in patients with >2 previous lines of therapy were 72% and 55%, and 60% and 22%, respectively (p-value=0.04). The median OS in patients with >2 previous lines of therapy and ≤2 lines of therapy was 16 and 49 months, respectively. Cumulative incidence (CI) of relapse was 25% with a median time to relapse of 5 months (range 1 – 38 months). Conclusions: Haploidentical haematopoietic stem-cell transplant is potentially curative in chemo-sensitive AML and MDS and offers a high rate of prolonged remission. Our cohort further confirms the role of consolidative haploidentical transplant in patients in complete remission and highlights that patients with heavily pre-treated disease may not benefit from this strategy.

    Performance of the beta-glucan test for the diagnosis of invasive fusariosis and scedosporiosis: a meta-analysis

    Get PDF
    The (1→3)-β-D-glucan (BDG) is a component of the fungal cell wall that can be detected in serum and used as an adjunctive tool for the diagnosis of invasive mold infections (IMI) in patients with hematologic cancer or other immunosuppressive conditions. However, its use is limited by modest sensitivity/specificity, inability to differentiate between fungal pathogens, and lack of detection of mucormycosis. Data about BDG performance for other relevant IMI, such as invasive fusariosis (IF) and invasive scedosporiosis/lomentosporiosis (IS) are scarce. The objective of this study was to assess the sensitivity of BDG for the diagnosis of IF and IS through systematic literature review and meta-analysis. Immunosuppressed patients diagnosed with proven or probable IF and IS, with interpretable BDG data were eligible. A total of 73 IF and 27 IS cases were included. The sensitivity of BDG for IF and IS diagnosis was 76.7% and 81.5%, respectively. In comparison, the sensitivity of serum galactomannan for IF was 27%. Importantly, BDG positivity preceded the diagnosis by conventional methods (culture or histopathology) in 73% and 94% of IF and IS cases, respectively. Specificity was not assessed because of lacking data. In conclusion, BDG testing may be useful in patients with suspected IF or IS. Combining BDG and galactomannan testing may also help differentiating between the different types of IMI

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Estimating the value of demand-side management in low-cost, solar micro-grids

    No full text
    Demand-side management has the potential to reduce the cost of solar based community micro-grids and solar home systems for electricity access. This paper presents a methodology for optimal least-cost sizing of generation assets while meeting explicit reliability constraints in micro-grids that are capable of active demand management. The battery management model considers kinetic constraints on battery operation and represents dispatch in the field to regulate the depth of discharge. The model allows consideration of the trade-off between depth of discharge, cycle life, and calendar lifetime in lead-acid batteries. Separate reliability targets for disaggregated, residential load profiles at hourly timesteps are considered to evaluate the performance and cost reduction potential of demand-side management capabilities — with economic results and sensitivity analyses around key input assumptions subsequently presented. We find that demand-side management can reduce the number and cost of requisite solar panels and batteries with the integration of real-time management and controls – a key result for justifying next generation micro-grids for electricity access. Keywords: Micro-grids, Electricity access, Demand-side management, Reliability, Asset selection, Off-grid, Techno-economic model, CostMassachusetts Institute of Technology. Tata Center for Technology and Desig

    Optimal sizing of solar and battery assets in decentralized micro-grids with demand-side management

    No full text
    Thesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Program, 2017.Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.Cataloged from PDF version of thesis.Includes bibliographical references (pages 199-209).Solar-based community micro-grids and individual home systems have been recognized as key enablers of electricity provision to the over one billion people living without energy access to-date. Despite significant cost reductions in solar panels, these options can still be cost-prohibitive mainly due over-sizing of generation assets corresponding with a lack of ability to actively manage electricity demand. The main contribution shared is the methodology and optimization approach of least-cost combinations of generation asset sizes, in solar panels and batteries, subject to meeting reliability constraints; these results are based on a techno-economic modeling approach constructed for assessing decentralized micro-grids with demand-side management capabilities. The software model constructed is implemented to represent the technical characteristics of a low-voltage, direct current network architecture and computational capabilities of a power management device. The main use-case of the model presented is based on serving representative, aggregated, household-level load profiles combined with simulated power output from solar photovoltaic modules and the kinetic operating constraints of lead-acid batteries at hourly timesteps over year-long simulations. The state-space for solutions is based on available solar module and battery capacities from distributors in Jharkhand, India. Additional work presented also extends to real-time operation of such isolated micro-grids with requisite local computation. First, for load disaggregation and forecasting purposes, clustering algorithms and statistical learning techniques are applied on quantitative results from inferred load profiles based on data logged from off-grid solar home systems. Second, results from an optimization approach to accurately parametrize a lead-acid battery model for potential usage in real-time field implementation are also shared. Economic results, sensitivity analyses around key technical and financial input assumptions, and comparisons in cost reductions due to the optimization of solar and battery assets for decentralized micro-grids with demand-side management capabilities are subsequently presented. The work concludes with insights and policy implications on establishing differentiated willingness-to-pay, tiers of service, and dynamic price-setting in advanced micro-grids.by Varun Mehra.S.M. in Technology and PolicyS.M
    corecore