91 research outputs found

    Creep-fatigue crack growth testing and analysis of pre-strained 316H stainless steel

    Get PDF
    Material pre-straining is known to have significant effects of the mechanical response and crack growth behaviour of steels. In this paper, the influence of material pre-straining on the subsequent creep-fatigue crack growth behaviour of Type 316H stainless steel at 550 °C has been examined by performing tests on compact tension specimens that were extracted from blocks uniformly pre-compressed at room temperature. Creep-fatigue crack growth tests on pre-compressed material were performed at the frequency of 0.01 Hz and R-ratio of 0.1. The crack growth data obtained from these experiments have been correlated with the C* and K fracture mechanics parameters and the results are compared with the existing creep crack growth data on the pre-compressed and as-received material at 550 °C. The results obtained have also been compared with the creep-fatigue data from experiments on weldments where the crack tip was located in the heat affected zone (HAZ). The crack growth behaviour in creep-fatigue tests on pre-compressed material has been found similar to that of HAZ material and are higher than that of the as-received material. Moreover, depending on the loading condition and frequency the crack growth data obtained from creep-fatigue tests on pre-compressed material may be characterized using C* or ΔK fracture mechanics parameters

    Fatigue crack growth rates for offshore wind monopile weldments in air and seawater: SLIC inter-laboratory test results

    Get PDF
    The majority of fatigue crack growth (FCG) data sets available on steels in air and seawater environments are several decades old and may not be appropriate for structural integrity assessment of offshore wind turbine foundations, which are fabricated using contemporary materials and welding technologies. Therefore, the SLIC joint industry project was formed to investigate the fatigue crack initiation and growth behaviour in offshore wind welded steel foundations. The FCG test data from the SLIC inter-laboratory (round robin) test programme have been analysed using a new proposed shape function solution and the results are presented and discussed. The obtained FCG trends in air and seawater environments have been compared with the recommended trends available in standards. The Paris-law constants and ΔKth values obtained from this programme can be used for defect assessment and remaining life prediction of offshore monopile weldments in air and seawater environments. The results from the SLIC project show that for a given value of ΔK the fatigue crack growth rate, da/dN, is on average around 2 times higher in seawater compared to air for the base metal and weldments. This factor of 2 in the seawater environment is almost half of the crack acceleration factor recommended by standards

    Determination of stress concentration factors in offshore wind welded structures through a hybrid experimental and numerical approach

    Get PDF
    Offshore wind turbine (OWT) monopile support structures generally consist of steel cans connected together through circumferential welding joints. One critical factor to evaluate the localised increase in stresses is the stress concentration factor (SCF) which depends on the welding quality. The complex welding profiles in OWT monopiles makes the accurate calculation of SCF quite challenging. In this work, an innovative approach for the calculation of SCFs in offshore welded structures is proposed based on combined 3D (three-dimensional) laser scanning technology (LST) and 3D finite element analysis (FEA). The precise geometry of the welded specimens is captured using 3D LST, and then imported into a finite element software to perform 3D FEA modelling to accurately calculate SCFs. A 2D (two-dimensional) FEA model of a typical offshore welded structure with ideal geometry is also developed in this work. In addition to numerically calculate SCFs, the 2D FEA model is further combined with non-linear RSM (response surface method) to derive analytical equations, expressing SCFs of offshore welded structures in terms of key welding parameters. Both LST-FEA3D and RSM-FEA2D models are applied to calculate SCFs in large-scale S-N fatigue welded specimens. The results indicate that the LST-FEA3D approach is capable of capturing the variation of SCFs along the width of the welded specimens and identifying the critical points where fatigue crack is most likely to initiate; and the RSM-FEA2D is valuable and efficient in deriving analytical parametric equations for SCFs

    Waveform and frequency effects on corrosion-fatigue crack growth behaviour in modern marine steels

    Get PDF
    The primary focus of this work is to investigate the sensitivity of cyclic waveform, frequency (f), load level and microstructure on the corrosion-fatigue crack growth rate (CFCGR) in modern normalised-rolled (NR) and thermomechanical control process (TMCP) ferrite-pearlite steels in the Paris Region of the da/dN vs. ΔK log-log plot. Constant amplitude sinewave (si) and trapezoid waveform (generally referred to here as hold-time (h-t)) were used under frequencies of 0.2 Hz, 0.3 Hz and 0.5 Hz and stress ratio of 0.1. Comparison is also made between the crack path in the S355 TMCP steel under si and h-t in seawater (SW). The role of microstructure in retarding or accelerating fatigue crack growth in SW is also discussed. Experimental results showed that the CFCGR corresponding to the si is higher than that of the h-t for all the load levels and frequencies examined. It was observed that reduction in the f and fatigue load level increased the CFCGR for the h-t but had little effect on the si. Generally, f in the range 0.2–0.5 Hz had little effect; and for a given f an increase in load led to a reduction in the CFCGR, in the Paris Region (PR) for both si and h-t in SW. Under both si and h-t, the CFCGR in the TMCP steels (e.g. S355G8 + M, S355G10 + M) is lower than that of the normalised steels (e.g. S355J2 + N). Metallurgical analyses on the fractured surface of corrosion-fatigue specimens show that the main active crack tip blunting process is the primary factor controlling the CFCGR of steel at high stress intensity factor range (SIFR) and low f in SW. The results obtained from this study have been discussed in terms of the potential impact on the structural design and integrity of offshore wind turbine foundations

    An investigation of irregular crack path effects on fracture mechanics parameters using a grain microstructure meshing technique

    Get PDF
    Electronic version of an article published as Journal of Multiscale Modeling, Vol. 4, Iss. 1, atricle 1250001, 2012, http://dx.doi.org/10.1142/S1756973712500011 © World Scientific Publishing Company, http://www.worldscientific.com/worldscinet/jmmA sub-grain size finite element modelling approach is presented in this paper to investigate variations in fracture mechanics parameters for irregular crack paths. The results can be used when modelling intergranular and transgranular crack growth where creep and fatigue are the dominant failure mechanisms and their crack paths are irregular. A novel method for sub-grain scale finite element mesh consisting of multiple elements encased in ~50–150 μm-sized grains has been developed and implemented in a compact tension, C(T), mesh structure. The replicated shapes and dimensions were derived from an isotropic metallic grain structure using representative random sized grain shapes repeated in sequence ahead of the crack tip. In this way the effects of crack tip angle ahead of the main crack path can be considered in a more realistic manner. A comprehensive sensitivity analysis has been performed for elastic and elastic-plastic materials using ABAQUS and the stress distributions, the stress intensity factor and the J-integral have been evaluated for irregular crack paths and compared to those of obtained from analytical solutions. To examine the local and macroscopic graph path effects on fracture mechanics parameters, a few extreme cases with various crack-tip angles have been modelled by keeping the macroscopic crack path parallel to the axis of symmetry. The numerical solutions from these granular mesh structures have been found in relatively good agreement with analytical solutions

    Prediction of creep crack initiation behaviour in 316H stainless steel using stress dependent creep ductility

    Get PDF
    The creep crack initiation behaviour of Type 316H stainless steel at 550 °C has been predicted by implementing a stress dependent creep ductility and average creep strain rate model in finite element analyses. Simulations were performed on five specimen geometries: C(T), CS(T), DEN(T), M(T) and SEN(T). The predicted results have been characterised using the C* fracture mechanics parameter and the short-term, long-term and transition creep crack initiation trends are predicted for each of the specimen geometries examined. The prediction results have been validated through comparison with experimental data available in the literature. The predicted short-term and long-term creep crack initiation trends have also been compared with NSW prediction lines. The predicted results, from each specimen geometry, are compared to each other and the differences in crack initiation trends have been discussed in terms of the specimen geometry, in-plane constraint and stress level effects on the creep crack initiation behaviour of the material. A mesh sensitivity analysis has also been performed to find the optimum mesh size for performing crack initiation simulations

    Analysis of tightening sequence effects on preload behaviour of offshore wind turbine M72 bolted connections

    Get PDF
    Offshore wind turbines in shallow waters are predominantly installed using a monopile foundation, onto which a transition piece and wind turbine are attached. Previously, the monopile to transition piece (MP-TP) connection was made using a grouted connection, however, cases of grout failure causing turbine slippage, among other issues, were reported. One solution is to use bolted ring flange connections, which involve using a large number of M72 bolts to provide a firm fixing between the MP-TP. It is in the interest of offshore wind operators to reduce the number of maintenance visits to these wind turbines by maintaining a preload (Fp) level above the minimum requirement for bolted MP-TP connections. The present study focuses on the effect of the tightening sequence on the Fp behaviour of M72 bolted connections. A detailed finite element (FE) model of a seven-bolt, representative segment of a monopile flange was developed with material properties obtained from the available literature. Three analyses were made to examine the effect on Fp after tightening, including the initial Fp level applied to the bolts, the tightening sequence and the effect of an additional tightening pass

    Sensitivity analysis of material microstructure effects on predicted crack paths using finite element simulations

    Get PDF
    The effects of microstructure, grain and grain boundary (GB) properties on predicted damage paths and indicative crack propagation direction have been examined for a polycrystalline material using mesoscale finite element simulations. Numerical analyses were carried out on a compact tension specimen geometry containing granular mesh structures with random grain shapes and sizes of average diameter 100μμm. Nanoindentation tests were performed to investigate the dependency of mesoscale hardness measurements on the indentation location with respect to grain and GB regions. Finite element results have shown that under tensile loading conditions, the predicted damage paths are very sensitive to the granular mesh structure, GB properties and individual grain properties. Furthermore, finite element results have revealed that the cracking mode (i.e., transgranular/intergranular) and maximum crack deviation angle are strongly dependent on the material microstructures employed in simulations. Read More: http://www.worldscientific.com/doi/10.1142/S175697371650003

    A review of fatigue performance of bolted connections in offshore wind turbines

    Get PDF
    Flanged bolted connections are used in offshore wind turbines to connect the monopile to the transition piece, and the transition piece to the tower. Forces and moments generated by the effects of winds, waves and currents subject these connections to variable amplitude cyclic loads. In the harsh marine offshore environment areas such as bolt threads are vulnerable to fatigue cracking and failure. Their structural integrity and life are influenced by coatings, lubricants, bolt size, design and tension, manufacturing tolerances and flange contact. This paper presents a review of the main challenges for fatigue life assessment of M72 bolted connections used in offshore wind turbines to connect the monopile to the transition piece, and the factors affecting the fatigue performance. Existing standards and guidelines along with different fatigue assessment methods presented in the literature are discussed in terms of their suitability for fatigue life assessment of M72 bolted connections for offshore wind turbines. One of the key challenges in fatigue life assessment of large scale bolts (e.g. M72) is the lack of experimental data points from which fatigue design curves can be derived. Recommendations are made for how to improve the current best practice for fatigue assessment of large scale bolted connections in the offshore wind industry and potential areas for further investigation are proposed for future research

    Plastic pre-compression and creep damage effects on the fracture toughness behaviour of Type 316H stainless steel

    Get PDF
    The influence of inelastic damage in the form of plastic pre-strain and creep damage, on fracture toughness of Type 316H stainless steel has been examined. Creep damage has been introduced into the 8% pre-compressed material by interrupting creep crack growth tests. Comparisons have been made between the fracture toughness test results from the as-received, pre-compressed and creep damaged materials. Furthermore, the effects of creep crack discontinuities on the crack tip strain fields have been examined by digital image correlation measurements. Inelastic damage was found to reduce the fracture toughness of the material, with creep damage having more severe effects than pre-strain
    • …
    corecore