274 research outputs found

    Generation of mouse oocytes defective in cAMP synthesis and degradation: Endogenous cyclic AMP is essential for meiotic arrest

    Get PDF
    AbstractAlthough it is established that cAMP accumulation plays a pivotal role in preventing meiotic resumption in mammalian oocytes, the mechanisms controlling cAMP levels in the female gamete have remained elusive. Both production of cAMP via GPCRs/Gs/adenylyl cyclases endogenous to the oocyte as well as diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that preclude maturation. Here we have used a genetic approach to investigate the different biochemical pathways contributing to cAMP accumulation and maturation in mouse oocytes. Because cAMP hydrolysis is greatly decreased and cAMP accumulates above a threshold, oocytes deficient in PDE3A do not resume meiosis in vitro or in vivo, resulting in complete female infertility. In vitro, inactivation of Gs or downregulation of the GPCR GPR3 causes meiotic resumption in the Pde3a null oocytes. Crossing of Pde3a−/− mice with Gpr3−/− mice causes partial recovery of female fertility. Unlike the complete meiotic block of the Pde3a null mice, oocyte maturation is restored in the double knockout, although it occurs prematurely as described for the Gpr3−/− mouse. The increase in cAMP that follows PDE3A ablation is not detected in double mutant oocytes, confirming that GPR3 functions upstream of PDE3A in the regulation of oocyte cAMP. Metabolic coupling between oocytes and granulosa cells was not affected in follicles from the single or double mutant mice, suggesting that diffusion of cAMP is not prevented. Finally, simultaneous ablation of GPR12, an additional receptor expressed in the oocyte, does not modify the Gpr3−/− phenotype. Taken together, these findings demonstrate that Gpr3 is epistatic to Pde3a and that fertility as well as meiotic arrest in the PDE3A-deficient oocyte is dependent on the activity of GPR3. These findings also suggest that cAMP diffusion through gap junctions or the activity of additional receptors is not sufficient by itself to maintain the meiotic arrest in the mouse oocyte

    Regulation of meiotic prophase arrest in mouse oocytes by GPR3, a constitutive activator of the Gs G protein

    Get PDF
    The arrest of meiotic prophase in mouse oocytes within antral follicles requires the G protein Gs and an orphan member of the G protein–coupled receptor family, GPR3. To determine whether GPR3 activates Gs, the localization of Gαs in follicle-enclosed oocytes from Gpr3+/+ and Gpr3−/− mice was compared by using immunofluorescence and GαsGFP. GPR3 decreased the ratio of Gαs in the oocyte plasma membrane versus the cytoplasm and also decreased the amount of Gαs in the oocyte. Both of these properties indicate that GPR3 activates Gs. The follicle cells around the oocyte are also necessary to keep the oocyte in prophase, suggesting that they might activate GPR3. However, GPR3-dependent Gs activity was similar in follicle-enclosed and follicle-free oocytes. Thus, the maintenance of prophase arrest depends on the constitutive activity of GPR3 in the oocyte, and the follicle cell signal acts by a means other than increasing GPR3 activity

    Drying Dynamics of Solution‐Processed Perovskite Thin‐Film Photovoltaics: In Situ Characterization, Modeling, and Process Control

    Get PDF
    A key challenge for the commercialization of perovskite photovoltaics is the transfer of high‐quality spin coated perovskite thin‐films toward applying industry‐scale thin‐film deposition techniques, such as slot‐die coating, spray coating, screen printing, or inkjet printing. Due to the complexity of the formation of polycrystalline perovskite thin‐films from the precursor solution, efficient strategies for process transfer require advancing the understanding of the involved dynamic processes. This work investigates the fundamental interrelation between the drying dynamics of the precursor solution thin‐film and the quality of the blade coated polycrystalline perovskite thin‐films. Precisely defined drying conditions are established using a temperature‐stabilized drying channel purged with a laminar flow of dry air. The dedicated channel is equipped with laser reflectometry at multiple probing positions, allowing for in situ monitoring of the perovskite solution thin‐film thickness during the drying process. Based on the drying dynamics as measured at varying drying parameters, namely at varying temperature and laminar air flow velocity, a quantitative model on the drying of perovskite thin‐films is derived. This model enables process transfer to industry‐scale deposition systems beyond brute force optimization. Via this approach, homogeneous and pinhole‐free blade coated perovskite thin‐films are fabricated, demonstrating high power conversion efficiencies of up to 19.5% (17.3% stabilized) in perovskite solar cells
    • 

    corecore