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Abstract 

This document presents the progress and effort made in the design of a dialog 
system for the virtual characters in DynaLearn. The main purpose of this system is to 
provide means by which the virtual characters can present relevant system 
knowledge to the learners in a pedagogically sound manner. 

After providing an overview of the role of dialogs in interactive learning 
environments we present the architecture of our approach and describe in detail the 
functionality of its three main components: Dialog Management, Verbalization and 
User Modeling. 
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1. Introduction 

The DynaLearn project aims to conceive and develop an interactive learning environment which 
combines current technologies and research from different areas in a way that provides learners and 
teachers with the optimal tools for a rich educational experience. 

The DynaLearn software reflects this through the integration of the following three modules, each 
providing different benefits to the overall application: 

• Conceptual Modeling (CM): Offers a graphical editor to build diagrammatic representations to 
learners to articulate, analyze and communicate ideas, and thereby construct their conceptual 
knowledge 

• Semantic Technology (ST): Provides web-based ontology mapping which be used to find and 
match co-learners working on similar ideas to provide individualized and mutually benefiting 
learning opportunities 

• Virtual Characters (VC): A cast of different virtual characters can be called upon to make the 
interaction with the software engaging and motivating 

To further specify the scope of this report, work on the Virtual Characters consists of the following tasks: 

• To enable learners to express their ideas on a conceptual model using a virtual character as a 
presenter that combines verbal and non-verbal means for communication 

• To realize various kinds of dialog between virtual characters representing different roles and 
functions to explain a conceptual model 

• To design communicative strategies for multiple agents that engage in a dialog about the model 
created by their learners 

This Deliverable reports on the progress of work on the last item, namely the results of Task 5.2 “Design 
and implementation of dialog functionality for characters”. 

The remainder of this document is structured as follows: We will first give an overview of the state of art 
in the field of dialog management for learning environments (Chapter 2). We will then show the current 
architectural state of the parts of the software relevant for this deliverable (Chapter 3). After that, we will 
elaborate on the different components of the architecture (Chapters 4-6) and we will end with a 
conclusion (Chapter 7) as well as a discussion and an outlook of future work (Chapter 8). 
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2. State of the Art/Literature 

2.1. Dialog Modes in Tutoring 

For a believable behavior of a virtual character with a positive impact on learning success we need to 
know how human teachers accomplish this task. Cade et al. observed and analyzed professional tutors at 
work. They identified eight mutually exclusive dialog modes (extracted from Cade et al. [1]): 

• Introduction: This mode captures the non-teaching dialogue that occurs as both tutor and 
student exchange greetings and attempt to establish the agenda for the tutoring session. 

• Lecture: The tutor explicitly dispenses domain information to the student. 
• Highlighting: During problem-solving activities, the tutor highlights what the problem is asking 

for and the information that it provides. The tutor can also break down the steps involved in a 
particular problem-solving method, create a “game plan” for working a problem, and redirect 
the student to the right path when they have forgotten parts of the method and its purpose. 

• Modeling: In this mode, the tutor works out a problem for the student. While the student may 
“participate” in the problem-solving process (i.e., do minor calculations that the tutor instructs 
them to do), the tutor takes the lead in solving the problem and initiates all of the problem-
solving steps. 

• Scaffolding: The tutor and student work out a selected problem together, each contributing 
portions of the answer that result in a solution. The tutor intervenes when necessary so that the 
student can successfully arrive at a correct solution. 

• Fading: The student works an entire problem with virtually no aid from the tutor, although the 
tutor may comment from time to time on their progress. 

• Off Topic: This is a portion of the session where the tutor and student are not engaged in the 
tutoring lesson for a significant amount of time. 

• Conclusion: Like the Introduction, this mode captures the social pragmatics as the session comes 
to a close, which has little to do with the lesson. 

The study also included analyses about the average frequency and the likeliness of transition between 
the modes.  On average each tutoring session consisted to over 50% of lecture and scaffolding.  Also a lot 
of transitions between those modes were observed. So lecture and scaffolding were identified as the 
most important elements. Later the expert tutors confirmed that they prefer "learning by doing" over 
modeling. Highlighting was mostly used in combination with scaffolding, to get the student back on 
track.  

Those results back up our assumption, that interaction is an important element in successful learning. 
That is why we concentrated our further research on scaffolding and how to integrate this into an 
Intelligent Learning Environment. 

2.2. Scaffolding 

Lindsay Lipscomb and colleagues summarized some scientific opinions on scaffolding, which describe it 
as a more extensive teaching principle [2] than Cade et al. who see scaffolding as one of their mutual 
exclusive dialog modes. 

Lipscomb et al. first describe Lev Vygotsky's Zone of Proximal Development [3]. Vygotsky divides a 
learner's developmental level into two parts: the actual developmental level, which represent the 
capability of the learner to solve problems without help and the potential developmental level, which the 
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learner can reach under guidance of a more competent helper. The Zone of Proximal Development (ZPD) is 
the zone between those two levels. A good teacher challenges his students with tasks that are in the ZPD. 
Otherwise they might be unchallenged or not able to solve the problem at all. While learning in the ZPD 
the actual developmental level rises and so does the potential developmental level. This means of course 
that also the Zone of Proximal Development changes all the time and the teacher has to adjust his means. 

Vygotsky also emphasizes the importance of an independent working learner. The task of the teacher is 
to assess the skills of the learner to confront him with problems, he can solve with only as much help as 
necessary. With growing knowledge the learner should need less and less guidance.  Vygotsky calls this 
process fading, in contrast to the definition of Cade et al. where fading is one of their dialog modes. You 
can say the process of Vygotsky ends in the dialog mode of Cade et al.  

Though Vygotsky never used the term Scaffolding, his work is often cited in this context. Because his 
work describes the fundamentals of this teaching principle: learner-adjusted guidance, minimality of the 
means, actively participation of the learner during the learning process and the resulting alternating 
activity of teacher and learner.  

For a more sophisticated description Lipscomb et al. cite the six general elements of scaffolded 
instructions of Zhao et al. [4].  

• Sharing a Specific Goal: Teacher and learner have to share the same goal. It lies in the 
responsibility of the teacher to establish this goal, considering the needs and interests of the 
learner. For this he has to assess the student’s current knowledge and skills. 

• Whole Task Approach: the learning process is focused on the overall goal. The student has to be 
taught everything he needs to solve the actual task. 

• Immediate Availability of Help: it is important to keep motivation and self-efficacy high. The 
teacher has to ensure that the learner achieves consistent successes by offering help at the right 
moment and when it is really needed. 

• Intention-Assisting: the teacher has to ensure that the learner follows effective strategies. Is this 
not the case he must act and bring the learner back on track. If the learner does everything right, 
this status should not be disturbed and help should only be provided following the third 
element of scaffolded instructions.  

• Optimal Level of Help: one of the greatest challenges for the teacher is to find the balance 
between guidance and independent work of the learner. The teacher should only help if the 
learner is not able to cope with the current problem, to prevent frustration. But he should not 
help too much, so the learner still plays an important part in the learning process. 

• Conveying an Expert Model: the teacher should provide expert models for orientation. The 
learner has to understand how this expert ways are accomplished. 

With this Zhao et al. define the basics for successful scaffolding. Lipscomb et al. additionally provide a set 
of methods a teacher can use to convey the necessary information: modeling the desired behavior, 
providing explanations, ask the learner to participate, evaluating the understanding of the learner and 
asking the learner to provide own solutions. This already points out that Lipscomb et al. see dialog 
modes like modeling and highlighting, according to Cade et al., as part of scaffolding and hence broaden 
the definition of this term. According to the references of Lipscomb et al. the teaching process should be 
started with modeling. The teacher should show the learner how to solve such problems correctly, 
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verbalizing his thoughts. In the further process the learner should be involved more and more, enabling 
the teacher to evaluate the learner’s knowledge and provide feedback.  

With this scaffolding gets a relatively clear structure. But Cade et al. disagree with the theories, which see 
dependence in the order of dialog modes. Their results indicate that there is no dependence. Also 
Graesser et al. [5] noticed in their observations of tutors, that they do not follow the scientific ideal 
strategies and still are successful.  

It is obvious that there is consensus in scaffolding in regard to the basics described by Vygotsky or at 
least similar approaches but there is no optimal way. But this provides us with the freedom, to find a way 
that considers the facts depicted by Lipscomb et al. and uses the dialog modes of Cade et al.  

2.3. Step-based feedback 

The next step was to get an idea how to implement scaffolding for an intelligent tutoring system. One of 
the best known intelligent tutoring systems is AutoTutor from Graesser et al. Its main goal is to teach 
students a deeper understanding of the subject matter and help them to give more detailed answers. For 
this a virtual character asks the student a series of questions and tries to establish an ongoing dialog.  

AutoTutor follows a 5-step dialog system, a pattern Graesser et al. retrieved from their observations of 
human expert tutors.  

Step 1: Tutor asks question (or presents problem) 
Step 2: Learner answers question (or begins to solve problem) 
Step 3: Tutor gives short immediate feedback on the quality of the answer (or solution) 
Step 4: The tutor and learner collaboratively improve the quality of the answer. 
Step 5: The tutor assesses the learner’s understanding of the answer 
 

This structure of this step-based approach is very simple and hence good to implement for a computer 
system. It fits, especially with step 4, the scaffolding approach. With step 1 and 2 the tutor assesses the 
current state of the learner’s knowledge. Step 3 establishes the shared goal namely to improve the 
answer of the learner. The last step evaluates the success of the process.  

The dialogs are created using fuzzy production rules and the so called Dialogue Advancer Network 
(DAN). Figure 1 shows the DAN used in AutoTutor. 
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Figure 1: The Dialogue Advancer Network used in AutoTutor (Source: [5]) 

Using these DANs, AutoTutor combines different dialog steps to one ongoing dialog. The dialog steps 
belong to one of the following categories: main questions, short feedback, pump, prompt, prompt 
response, hint, assertion, correction or summary. 

The fuzzy production rules determine with the help of different parameters which dialog step is chosen. 
Graesser et al. introduced the DAN because the rules do not consider the dialog history which resulted in 
confusing dialogs. Sometimes the students were not sure which action the agent was expecting from 
them. 

The Dialogue Advancer Network consists of nodes and edges, very similar to a state machine. With the 
DAN, AutoTutor considers preceded dialog steps resulting in sound dialogs that convey the learners 
what they have to do.  

Although AutoTutor has other goals than the tutoring elements of DynaLearn the technical ideas can 
also be applied to our needs. The use of state machines (or a similar structure like the DAN) to create a 
context sensitive dialog management also allows reacting fast on interaction of the learner with the 
system. As scaffolding relies on interaction between learner and tutor this is an important feature an 
appropriate intelligent tutoring system.  

AutoTutor also shows the complexity of such state machines is manageable. With a suitable 
development environment teachers, even with low programming knowledge, should be able to adjust 
the behavior of the tutoring agents according to their needs.  

That is why we decided to base our dialog management on Hierarchical Concurrent State Machines and 
the IDE SceneMaker. This kind of state machines allows us to create intuitive representations of agent 
behaviors implementing the scaffolding principle in regard to the research of Lipscomb et al. and Cade et 
al. 
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3. Architectural Overview 

Before we start to describe the different components involved in the dialog functionality for the virtual 
characters, we will first, as reminder, give an overview of the architecture as described in Deliverable 2.1 
“Technical design and architecture”. The relevant parts of this architecture can be seen in Figure 2. 

 

Figure 2: Architectural Overview of dataflow between CM and VC components 

As we can see, the VC component consists of two modules, of which only one, the Interaction Manager 
(IM), directly communicates with the CM component. It acts as a middleware between the conceptual 
modeling part of the DynaLearn software and the Flash Client which actually displays the virtual 
characters and their actions. The IM mediates between the others by relaying messages, requests and 
feedback, with the two most common being interactions by a learner and the passing of conceptual 
knowledge. 

The IM’s main purpose however is the dialog functionality, i.e. the transformation of this conceptual 
knowledge in its formal representation into a screenplay that virtual characters can follow to present the 
knowledge to a learner in an understandable and engaging way. These screenplays are XML-based and 
prompt the characters to walk around, play animations and of course speak. The characters’ utterances 
are displayed with speech bubbles, but can also be synthesized with the Mary Text-To-Speech System 
(http://mary.dfki.de/). 

The IM’s dialog functionality builds on the following three different parts, each of which will be further 
explained in the remainder of this document: 

• A Dialog Manager that decides What to say, based on learner input, dialog history, available data 
and other factors. Also, in our case of different characters, it must also be determined which 
character(s) should act. 

• A Verbalizer that decides How to say it, i.e. what words to use. 

• A User Model that keeps track of the user’s knowledge and interactions. The data provided by it 
can act as a filter or decision criteria for both of the other parts. 

 

http://mary.dfki.de/�


Project No. 231526  

Page 12 / 48 

DynaLearn D5.2 

4. Dialog Management 

Dialogs displayed by the virtual characters in the DynaLearn environment have to meet several 
requirements: 

• They should be reusable 
• They should be parametrizable 
• They might require input from other components at runtime 
• They should support multiple languages 
• They should be editable by non-computer experts 

Following these requirements, we decided to use SceneMaker, a toolkit for the authoring of interactive 
performances by virtual characters for the dialog management part in our architecture. 

In this section, we will first describe the SceneMaker and its functionality and then explain how we used it 
in the context of the DynaLearn software. 

4.1. The SceneMaker 

4.1.1. Introduction 

For the dialog management and interaction design of virtual characters' behavior, there are often 
employed authoring tools, whose main task is to allow inexperienced authors with low expert knowledge 
and little programming skills to rapidly prototype a model description for the virtual character's 
behavior. 

Since rule-based, frame-based, plan-based, or agent-based approaches to dialog management and 
interaction design require expert knowledge in a multitude of domains [6], many authoring tools pursue 
a finite-state-based approach [12, 11, 9, 7], using some kind of state-transition diagram, as an intuitive and 
suitable method to describe the behavior of a virtual character on a high level of abstraction. 

However, most of these state-of-the-art authoring tools use a single state-transition diagram, in which 
the behavior of many virtual characters, all their behavioral aspects, functions and modalities as well as 
the interactions between them and the user and among each other, respectively, are highly interwoven. 
As a result, it is a complex task for an author to identify, extract and understand the individual behavioral 
aspects and their coherences, making it error prone to modify single aspects in the model. Adding 
additional behavioral aspects or further virtual characters to the model may lead to an exponential 
explosion of the state space and to highly complex transition conditions [8]. 

Furthermore, these state-transition diagrams do not provide adequate and convenient methods to react 
to the possible unanticipated turn-taking behavior of an interactive performance. An author does not 
have sufficient information about the past states of interaction, which is necessary to model special kinds 
of reopening strategies and recapitulation phases for dialogs and interactive performances. She or he 
has to collect that information by hand, which constitutes an enormous amount of modeling effort. 
However, adequate reopening strategies and recapitulation phases for dialogs and interactive 
performances are indispensable to give the user the impression of adaptiveness and flexibility of the 
virtual characters' interaction skills. 
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4.1.2. Concepts 

The authoring suite SceneMaker [7, 10] makes use of a special kind of hierarchical and parallel state-
transition diagrams, called sceneflows, which can be used for modeling parallel processes, as they occur 
in multi-party dialog and interaction with virtual characters. SceneMaker's visual programming 
environment for the creation of sceneflows allows the structured modeling of event-based interaction in 
a rapid and comfortable way, making time exposure and modeling effort scalable and appreciable. 
Sceneflows are easily extensible and reusable and they can be tested or debugged without much 
expenditure. For the realization of special reopening strategies for dialogs, SceneMaker provides a 
mechanism of interaction history. The interaction history provides an author with a convenient method to 
describe the possible unanticipated turn-taking behavior and the adequate response to potential 
interruptions of an interactive performance. SceneMaker facilitates the creation of interactive 
performances because it divides the authoring task into the creation of dialog content and the modeling 
of the narrative and structure of an interactive performance. 

4.1.2.1. Organization of Dialog Content 

Dialog content is organized in a set of parameterizable scenes that are specified in a multimodal 
scenescript which resembles a movie script with dialog utterances and stage directions for controlling 
gestures, postures and facial expressions. For each scene, there may be provided a number of variations, 
subsumed in a scenegroup, to increase variety and to avoid repetitive behavior that would impact a 
virtual character's believability. Scenes can be created manually by an author with standard text 
processing software. For this purpose, the SceneMaker authoring suite provides a scenescript editor with 
syntax highlighting and lexical analysis features. Furthermore, scene content can be generated 
automatically by external generation modules such as qualitative reasoning models or semantical phrase 
generation modules. 
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Figure 3: Examples of calling scenes of the multimodal scenescript 

The execution semantics of a scene depends on the actual character or game engine on which the scene 
has to be played back. SceneMaker's runtime application interface provides a sceneplayer interface which 
can be implemented by a concrete player that handles the actual playback of a scene. 

Figure 4 shows a simplified diagram which shows the control and data flow between the sceneflow 
interpreter, the user-defined sceneplayer and the character or game engine: The sceneflow which was 
modeled in the SceneMaker editor is handed over to the sceneflow interpreter, which executes the 
sceneflow. Whenever a scene playback command in the sceneflow is executed, the respective 
sceneplayer is called. The sceneplayer makes a lookup into the scenescript to get the content of the 
scene taking into account possible gesticon or visicon data. The scene is then compiled into a 
sequence of actions or engine commands which are sent to the appropriate destination. After the 
scene has been played back the sceneflow interpreter continues with the execution of the remaining 
sceneflow. 

 

Figure 4: Simplified control and data flow during scene execution 

4.1.2.2. Modeling Narrative Structure with Sceneflows 

The narrative structure of an interactive performance is controlled by the sceneflow which is a 
hierarchical and parallel state-transition diagram specifying the logic organization and temporal order in 
which scenes are played or commands are executed. A scene flow consists of scenenodes, supernodes, 
different kinds of edges and a special kind of nodes, called historynodes resembling the system history. 
While each node can be linked to system commands or one or more scene playback commands, different 
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branching strategies such as logical and temporal conditions as well as randomization can be used by 
specifying different edge between these nodes. 

A supernode in a sceneflow may enfold several subgraphs, thus allowing for the hierarchical refinement 
and parallel decomposition of the sceneflow. This feature allows an author to carry out the modeling task 
in a divide-and-conquer manner. Except for synchronization measures, various control processes and 
user input processing as well as individual agents' behavior can be modeled independently of each 
other. Thus, the scene flow is kept clearly arranged, extensible and parts of it exchangeable. 

The Syntax of Sceneflows: The following two types of nodes can be part of a sceneflow (see Fig. 8): 

• Scenenode: Represents a state which allows the annotation with a command to play a Scene. A 
Scenenode may additionally be annotated with local type definitions, local variable definitions 
and variable assignments as well as with system commands like function calls to predefined 
functions of the underlying implementation language or native functions of the underlying 
operating system. Local type definitions, variable definitions and system commands are 
specified in a simple textual expressional language. 

• Supernode: Extends the functionality of Scenenodes with features exploited to create the 
hierarchical structure as well as the parallel decomposition of sceneflows. A Supernode may 
contain both Scenenodes and Supernodes that together constitute its subautomata. At least one 
of these Subnodes has to be declared the Startnode of that Supernode. If a Supernode contains 
multiple parallel subautomata then each of these subautomata defines exactly one Startnode. In 
contrast to Harel's conventional statecharts, sceneflows allow multiple parallel automata to 
share common reusable subcomponents. 
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Figure 5: Syntax of Scenenodes and Supernodes 

The example in Figure 5 illustrates the use of parallel subautomata within a Supernode. The subautomata 
displayed in the dashed rectangle describe a simplified round of betting in a poker game. The right 
automaton models the behavior of the virtual character that is in the role of the dealer. At first, in node 
Start there is executed the system call getCurrentRound to the poker game engine to query the 
minimum and maximum permissible bet size as well as the time given to the user to make her bet. Next, 
the dealer invites the user to make her bet in node Ask. Thereupon, in Supernode Wait, the dealer waits 
until the user has made her bet or the time given is up. In node Check, the dealer checks if the bet is 
valid. If so, the betting round ends, otherwise the dealer invites the user to make a valid bet once again. 
The left subautomaton models the behavior of an avatar representing the user in a virtual poker room. In 
node Think, the avatar shows some thoughtful behavior while the user is thinking about her bet size. At 
any other time, it shows some variations of idle behavior. The points in time when the avatar changes its 
behavior are synchronized with the right automaton, so the dealer's behavior. The user has the 
possibility to communicate her bet over some user input interface which is not addressed in greater 
detail here, whereupon the avatar's behavior is indirectly controlled by the user's interaction over it's 
synchronization with the dealer. 



Project No. 231526  

Page 17 / 48 

DynaLearn D5.2 

An edge represents a transition between a source state and one ore more target states. Sceneflows 
define the following different types of edges: 

• Epsilon Edge: Represents an unconditional transition (see Fig. 10(b)). Epsilon edges are used for 
the specification of the order in which computation steps are performed and Scenes are played 
back. 

• Conditional Edge: Represents a conditional transition and is labelled with a logical condition (see 
Fig. 10(d, e, f)). The transition is taken when the logical condition comes true. Conditional edges 
are used to create a branching structure in the sceneflow which describes the different reactions 
to changes of environmental conditions. 

• Timeout Edge: Represents a timed transition and is labelled with a timeout value (see Fig. 10(c)). 
The transition is taken when the timeout has expired. Timeout edges are used to regulate the 
temporal flow of a sceneflow's execution and to schedule the playback of Scenes and 
computation steps. 

• Probabilistic Edge: Represents a transition that is taken with a certain probability and is labeled 
with a probability value (see Fig. 10(g)). Probabilistic edges are used to create some degree of 
randomness and desired non-determinism during the execution of a sceneflow. 

• Fork Edge: A concept derived from the fork constructs of Harel's statecharts. Fork edges exploit 
the concept of parallel decomposition by allowing the splitting of a sceneflow's execution into 
several distinct processes that are executed concurrently (see Fig. 10(h)). Each of these 
concurrent processes executes a single parallel subautomaton of a sceneflow. 

 

Figure 6: Concurrency with fork edges 

Figue 6 shows how fork edges can be used for parallel decomposition when modeling the behavior of a 
virtual character. Two processes are created that concurrently execute the parallel automata Gesture and 
Dialog modeling the gestures and the dialog of the virtual character. 

• Interruptive Edge: Is used for the handling of interruptive events requiring a fast reaction - 
usually events caused by user input or external events of the application environment. 
Interruptive edges have the task to contemporarily interrupt a running Supernode and all its 
subautomata as quickly as possible. They may be labeled with any kind of condition (see Fig. 7(i)). 
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Figure 7: Different edge types and node flavours 

The syntax of sceneflows allows only certain combinations of outgoing edge types of a node. These valid 
combinations lead to the definition of the different flavors that a node can have (see Fig. 7): 

• None Node: A node that has no outgoing edges (see Fig. 7(a)). 

• Epsilon Node: A node that has exactly one outgoing epsilon edge (see Fig. 7(b)). An epsilon node 
may not have more than one epsilon edge and cannot be end node. 

• Timeout Node: A node that has exactly one outgoing timeout edge (see Fig. 7(c)). A timeout 
node may not have more than one timeout edge and cannot be end node. 

• Conditional Node: A node that has outgoing conditional edges (see Fig. 7(d,e,f)). A conditional 
node may have an arbitrary number of outgoing conditional edges and if it has exclusively 
conditional edges then it is a possible end node (see Fig. 7(d)). A conditional node can have 
either one single epsilon edge (see Fig. 7(e)) or one single timeout edge (see Fig. 7(f)). If a 
conditional node has an epsilon edge or a timeout edge then it cannot be end node. 

• Probabilistic Node: A node that has only outgoing probabilistic edges (see Fig. 7(g)). A 
probabilistic node may have an arbitrary number of probabilistic edges but no edges of other 
types. Also, it can not be end node. The probability values of all outgoing probabilistic edges 
have to sum up to 100. 

• Fork Node: A node that has only outgoing fork edges (Fig. 7(h)). A fork node may have an 
arbitrary number of fork edges but no edges of other types and cannot be end node. 
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• Interruptive Node: A Supernode that has only outgoing interruptive edges (see Fig. 7(i)). An 
interruptive Supernode may have an arbitrary number of outgoing interruptive edges but no 
edges of other types and it is a possible end node. 

Communication within Sceneflows: The individual behavioral functions and modalities that contribute to 
the behavior of a virtual character in an interactive performance are usually not completely independent, 
but have to be synchronized with each other. For example, speech is usually highly synchronized with 
non-verbal behavioral modalities like gestures and body postures. When modeling individual behavioral 
functions and modalities in separate parallel automata then the processes that concurrently execute 
these automata have to be synchronized by the author in order to coordinate all these behavioral 
aspects. Consequently, this requires a method for process communication in sceneflows. This 
communication is realized by a shared memory model. The syntax of sceneflows supports the following 
methods to synchronize concurrent processes. 

• Shared Variable Access: One method for the communication between multiple concurrent 
processes is using shared variables that are defined in the variable scope of a common 
Supernode of those nodes that are currently executed by these processes. 

• Local Variable Access: A second method for the communication between multiple concurrent 
processes is the direct access to a local variable of some node. For that purpose, sceneflows 
provide the expression ValueOf(id,var) which returns the current value of the variable var 
defined in the node id. 

• System Configuration Query: This is a method which makes the synchronization and 
communication of concurrent processes more intuitive for an author. Sceneflows allow a query 
to the system configuration containing, at any point in time, the nodes that are executed by some 
process. For that purpose, sceneflows provide the condition In(id) which allows to request if 
the node id is currently executed by some process. 

4.1.2.3. Using the Supernode History 

The history of a Supernode facilitates modeling reopening strategies and recapitulation phases of dialogs 
and interactive performances by falling back on automatically gathered information on past states of 
interaction. The history concept of sceneflows enfolds the following components: 

• History Memory The history of a Supernode automatically keeps track of the last substates the 
Supernode was in, values of data fields and the last system commands that were executed or 
Scenes that were played back. Sceneflows provide several expressions, conditions and 
commands to request these information and to manipulate or delete the history memory of a 
Supernode [10]. The automatically maintained history memory releases the author of the 
manual collection of these data, thus reducing the modeling effort. 

• History Node When reentering a Supernode that had already been executed and afterwards 
interrupted in the past, then the Supernode's subautomat starts at the Historynode instead of the 
Startnodes of this Supernode. Thus, the Historynode serves as orientation and starting point for 
the author if he or she models reopening strategies for the case of a reenacted execution of a 
Supernode. 
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Figure 8: Historynode and Historyconditions 

Figure 8 shows an exemplary use of the Historynode and the recorded history memory information. It 
shows the two parallel subautomata of a Supernode S1. The lower subautomaton models the non-verbal 
behavior of a virtual character while the upper subautomaton models the synchronized dialog behavior. 
S1 can be divided into two phases: First, the welcome phase in which the Supernodes Welcome 
Behavior and Welcome Dialog model the welcome behavior and the welcome dialog. Second, the 
game phase in which the Supernodes Game Behavior and Game Dialog model the game behavior 
and dialog. If S1 is interrupted at some time and afterwards reentered then it starts at the Historynode 
History. Starting from the Historynode, the history memory is requested by using the Historycondition 
HCS(S1,S4) to find out if S1 had been interrupted while executing Supernode Game Dialog which 
means that it happened during the game phase. If not, then S1 had been interrupted in the welcome 
phase and so the welcome phase is restarted over the node Restart Welcome, otherwise the game 
phase is reopened over the node Reopen Game without replaying the welcome phase once again. 

4.1.3. Visualization Software 

The visualization software is supposed to allow an author to test, simulate and debug a model in an early 
phase of development. It helps the author to control the modeling progress and to verify the correctness 
of the model. The visualization is based on the graphical user interface of the SceneMaker authoring tool. 
Figure 9 shows a screenshot of the SceneMaker authoring tool during the execution of a sceneflow. On 
the upper right side there is displayed an option dialog that allows changing a variety of visualization 
settings. There may be selected a runtime visualization mode which causes a temporary highlighting of 
executed nodes, edges and Scenes in a sceneflow. Additionally, there may be selected a trace 
visualization mode which causes the permanent highlighting of paths that have been taken in a 
sceneflow. On the top left side there can be seen the workspace of the editor which contains the 
sceneflow and a variable badge of the currently displayed Supernode. There can be seen that nodes, 
edges and Scenes are highlighted when executed and that the variable badge always shows the actual 
value of local and inherited variables. The bottom shows an integrated text editor which may be used to 
edit the Scenes. When a Scene is executed in a sceneflow then this Scene and the contained utterances 
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are also highlighted within the text editor. Finally, on the right side at the bottom there is shown the 
runtime monitor of SceneMaker. The runtime monitor shows the global variables of a sceneflow and 
allows the assignment of these variables with arbitrary expressions in the textual expression language 
that are evaluated at runtime. The runtime monitor may be used to simulate any kind of user input or 
sensor input during the execution of a sceneflow. 

 

Figure 9: The SceneMaker authoring tool 

4.2. Using SceneMaker in DynaLearn 

As an example of how to realize and use the scaffolding principle in DynaLearn we prototypical 
implemented the Diagnosis use case, using a mockup of the diagnosis itself. In this use case a virtual 
character (or several) evaluates the model created by the learner and helps them to correct it in a 
stepwise manner.  

For this we combine the elaboration of Lipscomb et al. with the dialog modes of Cade et al. The more 
widespread scaffolding of Lipscomb et al. determines the general behavior of our teacher, while we use 
dialog modes of Cade et al. as dialog steps within this behavior.  
 
As its overall task, the virtual character analyzes the model for mistakes and flaws and tries to lead the 
learner to the solution of the current problem step-by-step. For this purpose the “real” teacher provides 
different teaching aids for the learner from one of the following three categories: Lecture, Scaffolding 
and Modeling. The character usually chooses with an equal chance between lecture and scaffolding 
when providing an aid. These chances are based on the observations of Cade et al. where lectures and 
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scaffolding were the most present dialog modes with a very similar frequency. As we ideally want 
learners to find the solution by themselves, modeling (i.e. the exact correction of the mistake) is only 
appropriate if the character has exhausted all other means. In this way, we ensure learners can proceed 
with the correction of their model even if they cannot cope with a particular problem. 

The next section will describe the technical details of this behavior. 

4.2.1. Commands 

First we have to describe how the computation of guidance works. Since the dialog management is only 
responsible for behavior and sound dialogs we assume that the QR component does the analysis of the 
learner's model and provides the means the virtual tutor can use to help. Except lectures that can be 
prepared in scenes because their content does not change with a specific problem. It is just necessary to 
tell the dialog management which lecture fits the current problem. In principle we assume that the QR 
component provides a pool of aids that could help the learner to find the solution to the current 
problem. The dialog management chooses from this pool and integrates the aid into an ongoing dialog. 

We implemented several special commands in SceneMaker for this: 

requestTopic() - most problems can be assigned to a general topic like "entities and quantities". The 
correction of a model is the result of processing all topics that are not flawless in the model. With this 
function, the character requests a new topic that contains a general error message for the learner 
conveyed by the agent, like "There seems to be something wrong with your entities and quantities". Also 
the pool of resources the character can use to help the learner find the exact mistakes and solutions for 
them.  

getTeachingModes() - this command delivers according to the current probability distribution an 
integer (1 to 4) that represents a specific category of dialog modes. For example 1 means that the 
character should use one of the fitting lectures to help the student. If the chosen teaching mode is 4 the 
character has exhausted all means (even modeling) and can not help the student any more. 

checkResults() - this command tells the QR component to check the learner’s model again. This 
command is used after the learner tells the character that they are done with the correction of the model. 
With this the dialog management checks whether the topic is really solved. If not the agent has to 
continue his guidance for this topic. 

changeLikelihood(chosenMode, value) - as the specific help is chosen by chance it is self-
evident to change this likelihoods according to the success of the last used aid. For example the chances 
for scaffolding should rise significantly when lecture does not seem to lead the learner to the solution.  

4.2.2. Tags 

The scenes for the characters also include placeholders and instructions for the visualization component. 
The necessary information is saved in tags: 

$ID - these tags are placeholders with ID as an identifier that is matched and replaced with the 
corresponding parameter of PlaySceneGroup() 

[ClipName] - these tags signalize an animation that should be played with the corresponding utterance. 
This tag is also deleted during the processing of the scene.  

4.2.3. Implemented Tutoring / Communication Strategies 
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Following the idea of scaffolding our dialog management helps the learner to correct his model by 
guiding him through all flawed parts of his model. The agent retrieves one topic after another starting 
with fundamental issues heading towards more specific problems (see figure 10).  

 

Figure 10: The state machine implementing scaffolding 

The character starts each cycle (the processing of one topic) with a general error message (marked “A” in 
Figure 10). This roughly tells the learner which part of the model is not correct but they still have to find 
the specific mistakes by themselves. The character then requests the available teaching modes for this 
topic (B) and chooses one of them (C). 

Depending on this choice, one of the supernodes (D, E or F) is entered. Within them, the logic for the 
specific dialog mode is handled. For example within the Lecture supernode (see Figure 11) the agent asks 
after his lecture if the learner has understood (“A” in Figure 11) and waits for input (B). If the learner has 
not understood (C), the agent can provide - if available - a more detailed version of this lecture (D). This 
goes on until no more details are available (E) or the learner has understood (F). In any case, the lecture is 
now over (G). 
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Figure 11: Interior of the supernode Lecture 

In the supernode for Scaffolding we see which means the character can provide with this dialog mode 
(see Figure 12).  

 

Figure 12: The interior of the Scaffolding supernode 

Hints and Highlighting are quite similar. Highlighting (“A” in Figure 12) uses simple statements to draw 
learners’ attention to specific parts of the model (see Figure 13 for an example). Hints (B) are more to the 
point and indicate what the problem might be (see Figure 14 for an example). Questioning (C) involves 
learners a bit more directly by asking them to decide which option is right and correcting them if 
necessary (D). See Figure 15 for an example of questioning. 



Project No. 231526  

Page 25 / 48 

DynaLearn D5.2 

 

Figure 13: Example of Highlighting 

In Figure 13, the character uses highlighting to point to the fact that the entity “Biomass” should rather 
be modeled as a quantity. 

 

Figure 14: Example of a Hint 

In Figure 14 we have the same situation as above. This time, however, the character gives a hint. 

 

Figure 15: Example of Questioning 

In Figure 15, the character uses questioning to point the learner towards the fact that the equality should 
actually be a proportionality. 

After delivering the aid, the character now asks the learner to try and solve the problem (“G” in Figure 
10). From this point on, learners can always ask for more help, which results in a new choice of a teaching 
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mode (H), or declare they are done with the correction (I). If this has really fixed the error, the character 
praises the learner (J) and goes on with the next topic (K). Otherwise he tells the learner that he is 
unfortunately not done (L) and gives him a new advice.  

This goes on until all topics are processed and hence the model is corrected (M). During this process 
every step is accompanied by an utterance of the agent. In the resulting dialog, learners always know 
what the agent expects from them and that the system is reacting to their interaction. 
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5. Verbalization 

As mentioned above, the process of Verbalization deals with the exact choice of words once the content 
that is to be communicated is decided. 

For the verbalization of the virtual characters’ utterances in DynaLearn, we investigated the following 
concepts and approaches: 

• Verbalization of ontologies, e.g. Natural OWL [13] 
• Natural language realisations engines, e.g. SimpleNLG [14] 
• XML-based Natural Language Generation [15] 

However, since these approaches were either not suited for a multiple languages or introduced too much 
overhead in an implementation, we decided to use SceneMaker’s concepts of scenegroups and 
placeholders instead. 

Basically, scenes with placeholders can be seen as templates which are then filled with appropriate data. 
Figure 16 shows two different scenes from the same group which can be used to announce quiz results of 
their teachable agent (see Deliverable 5.3. for details) to the learner. 

 
Figure 16: Two example scenes with placeholders 

In this case, the quizmaster (‘Q’) character would randomly choose one of the two scenes and the 
placeholders could be filled with the values of the respective variables. 

In case of communicating conceptual knowledge related to a specific QR model, such as questions or 
explanations, the actual data has to be extracted first. As an example let us take a look at the answer to a 
What is?-Question from the Basic Help use case (again, see Deliverable 5.3. for details). Let us assume that 
a learner is looking at the model depicted in Figure 17. 
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Figure 17: Communicating Vessels example model 

If the learner were now to ask ‘What is Water right?’, the RDF-representation listed in Figure 18 would 
then be send to the IM from the CM. 

 

Figure 18: Example of an answer represented in RDF 

The representation is then parsed, using the OWL API [16]. This gives us the necessary data to fill in the 
placeholders in the scene file shown in Figure 19. 

 

Figure 19: Example scene for explaining an entity 

For the sake of completeness, Figure 20 shows how the teacher character then presents the explanation. 
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Figure 20: The teacher character explaining an entity 

Please note that in this case, the terms “quantity(ies)” and “configuration(s)” are replaced with the 
correct ones, once the number of items in the respective list is known and before the utterance is sent to 
the virtual characters. 
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6. User Model 

Assessing the knowledge of a student is a fundamental part of intelligent learning environments. We 
employ a Bayesian Network (BN) based approach to dealing with uncertainty when estimating a learner’s 
state of knowledge in the context of Qualitative Reasoning (QR). A proposal for a global architecture is 
given. The essentials of the belief network structure for individual scenarios are described, while paying 
special attention to knowledge aggregation and some design issues that are specific for the domain of 
QR. 

6.1. Bayesian networks as models of learners 

Probabilistic graphical models, diagrammatic representations of probability distributions, are useful in 
analyzing and solving complicated probabilistic models. They consist of nodes connected by edges, 
where each node represents a random variable, and each edge denotes a probabilistic relationship 
between the variables it connects. BNs are represented in terms of a directed graph. An important 
restriction that applies to such directed graphs is that they must be kept acyclic. In other words, there 
must be no closed paths within the graph that would allow us to start at one node, follow a path and 
come back to the point of origin. Therefore, BNs are essentially directed acyclic graphs (DAGs). 

Knowledge tracing was an early approach to student modeling that exploited the power of Bayesian 
inference, initially used by Corbett and Anderson in their ACT Programming Tutor [23], but was also 
proven to be useful for designing tutors for mathematics [25], and improving reading skills [18], and is 
statistically equivalent to Reye’s two-node dynamic BN used in many other learning environments [27]. 
Corbett and Anderson proposed a two-state model: each topic is either learned or unlearned (i.e. known 
or unknown). The model does not implement the idea of forgetting, but it does take the possibility of 
guesses and slips into consideration. 

Their knowledge tracing approach uses four initial parameters: 

• G – the guess parameter, i.e. the probability of the student's correct answer being a ‘lucky guess’ 
(when they don't know the actual correct answer);  

• S$ – the slip parameter, i.e. the probability of the student accidentally giving an incorrect answer 
(when they actually know the correct one); 

• L0 – the probability of knowing a skill at the beginning of a tutoring session; 

• T – the probability of learning an ‘unknown’ skill, at any given point during a tutoring session. 

Therefore, the probability of knowing a certain topic after an action n is calculated using that action as 
evidence for the posterior probability (see equation below). In the APT, the student is given exercises 
until their mastery level reached the probability of 95%. 

p(Ln|evidence) = p(Ln-1|evidence) + ((1–p(Ln-1|evidence))p(T)) 

Beck [19] pointed out a deficiency of most methods for developing Bayesian Knowledge Tracing models 
for specific skills – the identifiability problem, where models with equally good statistical fit to 
performance data may make very different predictions about a learner’s knowledge state, which could 
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result in different numbers of problems to be assigned to a student. Consequently, the problem could 
result in under- or over-practice. 

Baker et al. [17] proposed a new method for finding two of the four basic parameters, that differs in 
estimating the guess and slip parameters for individual actions (i.e. related to the context), instead of 
holding them constant for all situations. 

6.2. Bayesian learner model for DynaLearn 

In DynaLearn, the information flow starts with the user who constructs and simulates QR models. The 
information from these models and simulations is used to construct a BN. Based on the information in the 
network, i.e. the probabilities of knowing each concept, a question focus is determined, and a question 
request is sent to a QUAGS (QUestions about Garp Simulations), a question generator [24]. The question 
generator uses this request, the information about the models, question templates and a number of 
criteria to output a list of possible questions. Then, a question is selected and forwarded to the learner. 
For more information on the question generator process, see Deliverable 3.3. After the learner provides 
an answer, the information about the question and the response is stored in the dialog history, and the 
belief network is updated. 

In Brielmann’s [22] learner model, each primitive is represented as a node in the model BN, where 
magnitudes, derivatives, dependencies and correspondences are set to be the root nodes. We have 
already discussed the knowledge aggregation methods proposed by Reye [27] and Millán et al. [26], and 
Brielmann adopts the same approach in her model. We can observe the low level concepts as the concept 
nodes, the quantities as topic nodes, and entities as subject nodes found in [26]. That is, in order for a 
student to understand an entity, they must know all of its quantities first. In order to know a quantity, on 
the other hand, a learner must understand all the root concepts directly related to it. The idea is shown in 
Figure 21 for a simple ‘Tree and shade’ model [20]. It is supposed to describe the relation between a 
growing tree and the shade that is being cast on the ground by the tree. We see that the proportionality 
and influence nodes both contribute to two upper level nodes, as each of them carries knowledge about 
two concepts. 

 

Figure 21: Tree and shade: Knowledge aggregation 

Each root node is connected to an extra child node representing an observation from a system-learner 
interaction. This approach makes it possible to include the possibility of guesses and slips, as proposed 
by [27]. As the learner’s knowledge changes over time, after each interaction, the network is extended by 
another time slice. This lets us collect more than one piece of evidence for a piece of knowledge and 
provides us with the means to add the possibility of the learner learning or forgetting something 
between two points in time/interactions, as discussed in the earlier sections. 
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A number of key issues are not covered by [22]. If a model has multiple scenarios, the system would see 
each scenario as a completely separate domain. Moreover, it does not cover recurring concepts or 
substructures within the same scenario. Learning about one instance of a MF should imply we have also 
learned something about any other instance of the same MF. 

6.3. Global architecture 

Before we elaborate on the generation of the Bayesian Network, let us first take a look at the 
architectural considerations of our learner model. 

A single scenario (and simulation) within a QR model holds only partial information about the domain 
covered by the model. Similarly, a single QR model could be only a small part of a bigger domain a 
student’s supposed to cover. Therefore, our learner model should not only be able to handle individual 
scenarios, as per single examination session provided by the question generator, but also support 
moving between scenarios, or even models. 

Two possibilities seem appropriate. We could either update the information inside the existing BN, or 
create a new (global) one, based on the information contained in the previously created network(s). We 
know, however, that we do not want to simply move the knowledge directly from one scenario to 
another and aggregate unnecessary information as we move on. Also, trapping the acquired information 
in a single external network is definitely not the way to move forward. Therefore, an ideal approach 
should store acquired knowledge in an external repository after each examination session, but also be 
able to retrieve the necessary information from that source when switching to a new scenario. 

When loading a new simulation, the system would compare the concepts occurring in it with the ones 
contained in the model knowledge base. It would then create the belief network for the given scenario 
and update the information about the concepts the student has already seen earlier accordingly. The 
same approach could be easily extended to the global/domain level, so that the information would flow 
between a domain knowledge base (KB) and the individual scenario KBs. 

6.4. Individual scenario with simulation 

What needs to be learned? We should pay special attention to the low level (system) view, as it holds the 
essential information stored in each QR model, as suggested by [22]. To determine exactly what low-level 
concepts need to be represented in the network structure, we need to see first what questions can be 
asked, and what information the answers to questions hold. 

An analysis of all QUAGS question types has produced the following list of low level concepts (to be 
explained below) the answers to such questions can hold information about: (1) Magnitudes, (2) 
Derivatives, (3) Quantity spaces, (4) Influences and proportionalities, (5) Inequalities, (6) Calculations, and 
(7) Correspondences. Each of the items in this list can be addressed directly by a QUAGS question. We 
consider quantities, entities and MFs high-level concepts, and the question generator does not ask any 
direct questions about any of them. Keep in mind, though, that if the current focus of the question 
generator was a certain quantity, we would like to track the student’s knowledge about that quantity. 
Therefore, we are not saying high-level nodes should be left out from the network structure. 

6.4.1. Recurring concepts 
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Imagine the following setup – in an additional MF of the Tree and shade model, instead of one, we have 
two trees, where one grows in the shade of the other (bigger) one. Therefore, the more the big tree 
grows, the slower will the small tree grow. Keep in mind that this third MF would become active only if 
the scenario setup allowed for it. Now, suppose in one scenario, this new MF activates. In terms of low-
level concepts seen above, same forces are at work for both trees. This is due to the fact that they are 
merely instances of the same entity, that serves as a condition for two other MFs, that specify the 
dynamics of the tree and shade growth process. Going back to the original question, i.e. “What needs to 
be learned?”, we realize that what we want to learn about is the Tree entity, and any instances of this 
entity should be treated as such. That is, every instance of a concept carries a certain amount of 
information about the generic entity, but the global (model/domain) knowledge base should keep track 
only of the generic concepts, as this is what we want to know about. 

6.4.2. Recurring substructures 

The example with two trees given above served another purpose by bringing up the following question: 
if a student learns something about one of the trees, have they not learned something about the other 
one as well? The problem at hand is a peculiar one, as it suggests the information in such cases should 
flow both ways. We already know that loops are not allowed in BNs. That means that a direct connection 
from one instance to another, as shown in Figure 22, would not work. Another approach, preserving the 
guess and slip factor for instance-specific question nodes, would also result in an illegal BN structure 
(Figure 23). Many other options also fail. 

 

Figure 22: Illegal graph - Direct connection 

 

 

Figure 23: Illegal graph - Via question nodes 
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Therefore, we avoid the cycle trap through the idea of answer collectors. This approach adds an 
additional layer to the network, between the low level concepts and the question (outcome) nodes. The 
structure in Figure 24 shows a low level concept called PositiveProportionality AH and three of its 
instances. Each answer collector, as its name implies, collects answers coming from the outcome nodes 
and distributes it among all of the instance nodes. Moreover, the idea of guesses and slips is preserved. 

 

Figure 24: Recurring concept knowledge distribution via answer collectors 

6.4.3. Soft evidential updating 

As [28] explain, evidence is a collection of hard or soft findings on variables. Whereas a hard finding 
specifies which value a variable is in, a soft one specifies a probability distribution of a variable. Soft 
evidence is a collection of soft findings. In other words, instead of saying a concept is simply known or 
unknown, we could directly involve uncertainty using soft evidence and, after an interaction, say 
something is, for instance, 65% known. Then, by leaving only the question node dynamic, we could 
mimic Reye’s [27] approach by directly setting the probabilities for each time slice, with a controlled level 
of uncertainty. 

6.4.4. No temporal nodes 

The last option is to abandon the idea of time entirely (this does not mean we should ignore the concept 
of interaction history, though). One way to do this is to assign multiple question nodes to each concept 
(i.e. one node for each question). However, in order to preserve the idea of guesses and slips, and merge 
the new approach with the rest of the architecture seen so far, we would need to add another, 
intermediate layer (as the direction of the edges pointing to question nodes would have to be reversed). 
Figure 25 shows what this new substructure would look like for an answer collector with three questions. 
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Figure 25: Multiple questions, no time slices 

6.4.5. How many questions? 

An obvious question that remains to be answered is how many questions we need to ask for each 
concept in order to mark it as “known”. 

• Concept types – First of all, we need to be aware of the number of possible question types the 
question generator can ask for each concept. This can also serve as a relevance measure for each 
concept type. For instance, QUAGS can ask only one question about a quantity space, but 
multiple questions about magnitudes, derivatives, (in)direct influences etc. 

• Domain difficulty – When it comes to QR models, domain difficulty could be measured in terms of 
model, or even simulation complexity. However, an appropriate complexity measure would have 
to be a relative one, taking into consideration a large library of models, scaling from simple 
domains to complex ones. We are saying “simple” and “complex”, instead of “small” and “large”, 
as a large model is not necessarily a complex one, as it may produce a simpler state graph than a 
considerably smaller model. 

• Quantity spaces vs. network size – As only a single question can be asked about a quantity space, 
not taking quantity spaces into consideration as separate concepts is also an option. Each 
quantity node (both generic and scenario specific) requires adding an additional node to 
represent its quantity space. Therefore, by excluding such nodes, we would be reducing the size 
of the network by a number corresponding to the total number of quantity nodes. As a 
substitute solution, we could attribute quantity space specific questions to magnitudes. 

6.4.6. Low-level concept impact 

In the simplest setup, we assume each of the low-level concept nodes contributes to the higher-level 
nodes equally. In the example seen in Figure 21, for instance, that would mean that each of the four 
nodes connected to the Size node would “weigh” 25% in terms of knowledge. However, one could 
disagree that the concepts are equally important, and say that, for example, the knowledge about a 
magnitude is more important than the one about an influence. This could be regarded as a matter of 
preference. 

6.4.7. Answer collector impact 
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One might argue that an instance specific answer collector should “share” more knowledge with the 
instance it belongs to, i.e. have a little more impact on it than the other collector nodes. We can try to 
assign a weight, e.g. X, that will help us distribute the probabilities less “fairly”. For example, in the above 
mentioned example with 3 instances, with a fair conditional probability distribution (CPD), the definition 
table for PositiveProportionality AH1 looks as given in Table 1 (K = Known, U = Unknown). 

PositiveProportionality_AH1 
PP AH1 Answer Collector K U 
PP AH2 Answer Collector K U K U 
PP AH3 Answer Collector K U K U K U K U 

Known 1 0.67 0.67 0.33 0.67 0.33 0.33 0 
Unknown 0.33 0.33 0.67 0.33 0.33 0.67 0.67 1 

Table 1: CPD table for the PositiveProportionality AH1 node 

Therefore, if the instance specific answer collector is known, the algorithm should boost the probabilities 
by the amount assigned to the weight variable, and if it is unknown, the probabilities should be 
decreased by the same amount. To be more specific, currently, the probability of a node being known (K) 
is calculated as follows: 

K = k/N 

where N is the number of instances and k the number of known instances. By altering the distribution 
process as explained above we get: 

1. If the instance specific answer collector is known: K = k/N + X/N 
2. If the instance specific answer collector is not known: K = k/N – X/N 

We normalize the weight (X/N), so the probabilities get boosted/decreased by a normalized “fraction of 
knowledge” rather than by a fixed number (we do not want to add/subtract the same amount, e.g. 5%, to 
an instance with 1 and 10 duplicates). The modified CPD for X = 0.06 can be seen in Table 2. 

PositiveProportionality_AH1 
PP AH1 Answer Collector K U 
PP AH2 Answer Collector K U K U 
PP AH3 Answer Collector K U K U K U K U 

Known 1 0.73 0.73 0.39 0.61 0.27 0.27 0 
Unknown 0 0.27 0.27 0.61 0.39 0.73 0.73 1 

Table 2: CPD table for the PositiveProportionality AH1 node 

Figure 26 depicts this idea. The displayed structure uses the non-dynamic approach (i.e. a fixed number 
of questions) shown in Figure 19 for the sake of clarity. We can see that one of question nodes was 
marked as known. Here, we can also see the guess factor at work – the reason the answer node right 
above the question one shows the probability of 99% instead of 100%, as one may expect, is the fact that 
the probability of a guess is set to 0.01 (i.e. 1%). This further boosts the probability of the instance-
specific answer collector to 74% and the probability of knowing that particular instance 
(PositiveProportionality AH1) to 60%. At the same time, the other instances also receive an increase in 
probability, but the impact of the external answer collector is slightly less, as expected, so the new value 
for each of the duplicates is 57%. Each of the instances contributes equally to the generic concept, so the 
probability of knowing PositiveProportionality AH is now 58%. 
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Figure 26: Answer collector impact with instance specific weights 

6.5. Bayesian network structure evaluation 

For the sake of evaluating our work, we have chosen the well-known Communicating vessels model [20]. 
It is considerably more complex than the Tree and shade model, and it contains a number of issues 
discussed so far which were not covered by earlier approaches, including inequalities, equations and 
recurring substructures. 

The domain is represented by multiple containers containing a homogeneous fluid, connected to each 
other at the bottom by a pipe. If there is more liquid in any of the vessels, the difference in hydrostatic 
pressure will make the liquid flow out of the container with the higher amount of content into the other 
vessels via the pipe, until it eventually finds an equilibrium (balances out to the same level in all of the 
containers). The pressure depends only on how far the liquid surface is from the bottom of the container 
(the liquid is acted upon by gravity), and is not affected by the shape of the container. 

6.5.1. Communicating vessels model fragments 

The structure and behavior of the communicating vessel system is described by two MFs. The Contained 
liquid MF (Figure 27) models a single container with liquid. The quantities Amount, Height, and Pressure 
are introduced as consequences of a Liquid entity, contained inside a Container. Since we know that if 
Amount changes, Height changes in the same direction, but so does Pressure, we model these 
relationships using positive proportionalities in appropriate directions. Moreover, all of the quantities 
also have to be in the same interval at the same time. This is modeled using quantity space 
correspondences. Finally there is an equality relation between Height and Pressure. 
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Figure 27: Contained liquid model fragment 

The second MF, named Liquid flow describes the communicating vessels mechanism for two containers, 
and is given in Figure 28. The Contained liquid MF serves as a condition twice, i.e. once for each 
container. A conditional Pipe entity instance connects the two containers, and introduces the Flow 
quantity, which, when in the positive interval, increases Amount in the right container and decreases the 
one in the left one via a positive and a negative influence relationship, respectively. The actual 
magnitude of Flow is calculated as the difference between the magnitudes of the two Pressure 
quantities, i.e. by subtracting Pressure on the right side from the pressure on the left side. In order for the 
simulation engine to be able to determine Flow’s derivative, the change is described using a positive 
proportionality from Pressure on the left hand side, and a negative one from Pressure on the right hand 
side. That is, when the pressure of the left container increases, the flow in the pipe increases as well, and 
when the pressure in the right vessel increases, the liquid flow decreases. 

 

Figure 28: Liquid flow model fragment 

6.5.2. Communicating vessels scenario 

We will take only a single scenario into consideration and construct our network based on it. The scenario 
is called ‘Both tanks partially filled but left is higher’ and is shown in Figure 29. It represents two containers, 
partially filled with oil (magnitudes set to plus), where the height of the liquid column on the left is 
greater than the one on the opposite side (modeled using an inequality relationship). 
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Figure 29: Both tanks partially filled but left is higher scenario 

Final structure implementation:  Due to space constraints and the size of the network, the final structure 
will not be shown here. Our choice of options was constrained due to a number of bugs, and a lack of 
support for certain concepts (at the time of this writing) in the jSMILE API.  

To be more specific, the concepts that could not be implemented were the ideas of temporal nodes and 
soft evidence. Therefore, we were left with only one option, namely, to abandon the concept of time and 
determine the number of possible question nodes beforehand. Despite these shortcomings, however, 
the approach yielded promising results (see section 6.5.4) and once the problems in the jSMILE API are 
addressed, we plan to implement the missing concepts. 

6.5.3. Choice of parameters 

Table 3 lists the choice of parameters used for evaluation of the network. The prior probabilities of all 
concept nodes are set to 50%, i.e. the probabilities of a student knowing or not knowing a topic are the 
same. Furthermore, we assume that all parent (root) nodes of a concept contribute equally to the child 
(concept impact entry). For instance, if an entity has four quantities, each quantity node will be “worth” 
1/4, i.e. 25% in terms of knowledge. The probability of a learner giving a correct answer, although he 
does not know it (i.e. guessing) is 0.1. The probability of answering incorrectly, while knowing the topic 
(i.e. slipping) is 0.01. Finally, the last seven entries in the table represent an experimental set of choices 
for the number of questions per concept, based on the number of possible questions that can be asked 
regarding each of those concepts by QUAGS. 

Parameter Parameter value 
Concept node prior 0.5 
Concept impact 1/#parents 
Answer collector weight 0.06 
Probability of a guess 0.1 
Probability of a slip 0.01 
Questions per magnitude 5 
Questions per derivative 5 
Questions per influence 5 
Questions per proportionality 5 
Questions per correspondence 2 
Questions per inequality 2 
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Questions per calculation 1 
Table 3: Choice of parameters 

6.5.4. Evaluation 

We first evaluate a single root node to see how its probability responds to evidence updates, and how 
this knowledge is propagated to upper level nodes. For each concept tested, we first visit all of the 
question nodes once, and arbitrarily add evidence. Then, we revisit the same nodes, and update any 
answer that was initially set to be incorrect, to correct, so the probability of the root node reaches its 
maximum value (for its answer collector; duplicate instance nodes are affected by other duplicates’ 
answer collectors, too). Figure 30 shows how the system’s belief of the user’s knowledge of 
Magnitude_s_71 and owl_q_s_flow1 (the quantity the magnitude belongs to) develops across eight 
learner-system interactions/questions. As given in Table 3, since the node is of type Magnitude, we ask 
five questions. The learner gives an incorrect answer to the third question, and the probability of both 
the magnitude and quantity concepts decreases. The remaining two answers are correct, though, and the 
probabilities go up. Then, as described above, we “fix” the single incorrect answer at interaction number 
six, so the concept of Magnitude_s_7 becomes 91%, which is the maximum value that node can attain, 
due to the guess and slip factors and the fixed number of questions. The owl_q_s_flow1 quantity node 
reaches 56%, which is the maximum probability for that node if there is no evidence about the other 
parents of the same node. 

 

Figure 30: Learning chart for the flow quantity’s magnitude 

The above test shows how the system’s belief progresses when we are dealing with a single instance with 
no duplicates, i.e. only one answer collector. Next, we observe the behaviour of a quantity instance, 
which is not unique, namely, owl_q_s_amount1 through its magnitude, i.e. Magnitude_s_3 (Figure 31). 

                                                           
1 The evaluation graph names correspond to the internal representation of each concept in OWL, as the network 
construction process has been automated. The “_s” suffix indicates we’re dealing with a scenario specific concept, i.e. 
an instance. 
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Because the first four answers are all wrong, the probability of knowing the magnitude goes down to 
only 24%. Meanwhile, the probability of knowing the quantity it belongs to drops down to 45%, and the 
second instance of the Amount quantity decreases slightly less, i.e. to 46%, due to the answer collector 
impact parameter. Then, the remaining question is answered correctly, and the examination session is 
extended by another four interactions, so all of the answers are fixed. The magnitude concept gets to 
72% after interaction number nine, which is the maximum it can reach, as the second instance holds the 
remaining knowledge. At the same time, owl_q_s_amount1 increases to 54%, and the second instance to 
around 53%, which is now slightly less, but again, due to the answer collector impact. 

 

Figure 31: Learning plot for the amount quantity’s magnitude 

Instead of a root node, we now turn the focus to a whole quantity, namely, owl_q_s_flow1. We test all 
concepts related to the quantity using the same method as seen above, and watch the system’s belief 
about both the parent nodes and the child develop. We also see the system asks a single question about 
Minus_s_1, as the quantity is part of the equation seen in Figure 32.The probability of knowing the 
quantity slowly progresses towards the maximum (91%). 
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Figure 32: Learning plot for the amount quantity and related concepts 

In Figure 32 we show the results of a session focusing on the quantity owl_q_s_amount1. We test all 
quantity related concepts, and show the results for both the quantity and the second instance of the 
Amount quantity (owl_q_s_amount1). We see that as the probability of knowing first instance increases, 
so does the probability of understanding the second one, only at a slightly slower rate. The breaking 
point is at question number 24, where the system’s belief about the second instance stops changing. This 
is due to the fact that questions 24–28 are related to the concept of NegativeInfluence_s_1, i.e. the 
negative influence relationship between the quantities Flow and Amount (Figure 28). This information is 
only Liquid flow MF specific and, as such, carries no information about the second instance of the Amount 
quantity. 

The small evaluation presented here shows the potential and workings of the approach taken. We expect 
that use in actual educational settings will further refine this picture. 
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7. Conclusion 

In this deliverable we presented the progress and current state of task 5.2. “Design and implementation 
of dialog functionality for characters”. We gave an overview of the state of art in dialog management in 
learning environments and described the three different components of our approach: Dialog 
Management, Verbalization and User Modeling. 

This dialog functionality can now be used for the implementation of the virtual characters’ dialogs for 
future use cases. It allows learners to have interesting and engaging dialogs with the characters. The 
characters can react to the learners’ actions (past and current) and refer to conceptual knowledge in 
natural language.  

But in addition, owing to SceneMaker’s part in this approach, teachers and other interested parties will 
be able to change, modify or enhance these dialogs in a comfortable way.  
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8. Discussion and Future Work 

In this final chapter, we reflect on each of the parts of the characters’ dialog functionality presented in 
this deliverable. 

8.1. Dialog Management 

The choice of SceneMaker as the dialog manager for our characters allows us to create their behavior in 
an intuitive way while also taking the learners’ actions into account. It also comes with a couple of 
secondary benefits such as the possibility for multi-language dialogs, separation of logic and content and 
the opportunity for non-computer experts to create new dialogs in an easy way. 

Through the implementation of the Teachable Agent use case (see Deliverable 5.3) we learned that our 
approach is viable for combining the actions of multiple characters with the learner’s interaction and 
conceptual knowledge from the CM.  

Our mockup implementation of the Diagnosis use case showed how the different teaching strategies can 
be used to guide a learner in the right direction and provide valuable help. This feature will become 
interesting in the upcoming Deliverable 5.4, when we will use it to implement the “real” Diagnosis and 
the Ontology-Based Feedback. 

Finally, it is left to say that future use cases might bring new challenges that require some alterations to 
the usage of the SceneMaker within DynaLearn, new commands and tags being the most probable ones. 

8.2. Verbalization 

While the verbalization process described in this report suits the needs of the dialog functionality, it is a 
very simple one. So far, it was used and showed good results for verbalizing conceptual knowledge for 
the Basic Help and Teachable Agent use cases. 

Future use cases might warrant improvements and the addition of more sophisticated concepts. 
However, as supporting other languages (Brazilian being the most prominent one) is one of the future 
aims, it has to be seen, which of these concepts can be used for multiple different languages. 

8.3. User Model 

A set of fundamental issues related to constructing a BN from a QR model were successfully solved. The 
new approach advances this work. It provides the system with the means to successfully gather 
information about a learner’s understanding of a domain. Still, it appears some obstacles need more 
work. For instance, selecting an appropriate number of questions per concept type beforehand needs to 
be further investigated. The lack of temporal nodes makes it impossible to see the learner’s knowledge of 
any concept go above a limit set/constrained by the guess and slip parameters. 

Further improvement concerns alternative methods for updating a user’s knowledge (both temporal 
nodes and soft evidence). This would solve the above-mentioned problems regarding the maximum 
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probability that can be achieved for any node. Also, the idea of different concept types carrying different 
amounts of information should be given more attention. 

Another topic that should be investigated further is the idea of “landmarks”. For instance, certain MFs 
have conditions, such as a specific quantity value that needs to be reached in order for the MF to get 
activated. This information appears to be crucial, and, as such, should be properly represented in the 
learner model. 
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