223 research outputs found

    Fine Root Productivity and Dynamics on a Forested Floodplain in South Carolina

    Get PDF
    The highly dynamic, fine-root component of forested wetland ecosystems has received inadequate attention in the literature. Characterizing fine root dynamics is a challenging endeavor in any system, but the difficulties are particularly evident in forested floodplains where frequent hydrologic fluctuations directly influence fine root dynamics. Fine root (\u3c 3mm) biomass, production, and turnover were estimated for three soils exhibiting different drainage patterns within a mixed-oak community on the Coosawhatchie River floodplain, Jasper County, SC. Within a 45-cm deep vertical profile, 74% of total fine root biomass was restricted to the upper 15 cm of the soil surface. Fine root biomass decreased as the soil became less well-drained (e.g., fine root biomass in well-drained soil \u3e intermediately drained soil \u3e poorly drained soil). Fine root productivity was measured for one year using minirhizotrons and in-situ screens. Both methods suggested higher fine root production in better drained soils but showed frequent fluctuations in fine root growth and mortality, suggesting the need for frequent sampling at short intervals (e.g., monthly) to accurately assess fine root growth and turnover. Fine root production, estimated with in-situ screens, was 1.5, 1.8, and 0.9 Mg ha-1 yr-1 in the well-drained, intermediately drained, and poorly drained soils, respectively. Results from minirhizotrons indicated that fine roots in well-drained soils grew to greater depths while fine roots in poorly drained soils were restricted to surface soils. Minirhizotrons also revealed that the distribution of fine roots among morphological classes changed between well-drained and poorly drained soils

    Sequence-selective detection of double-stranded DNA sequences using pyrrole-imidazole polyamide microarrays

    Get PDF
    We describe a microarray format that can detect double-stranded DNA sequences with a high degree of sequence selectivity. Cyclooctyne-derivatized pyrrole-imidazole polyamides were immobilized on azide-modified glass substrates using microcontact printing and a strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. These polyamide-immobilized substrates selectively detected a seven-base-pair binding site incorporated within a double-stranded oligodeoxyribonucleotide sequence even in the presence of an excess of a sequence with a single-base-pair mismatc

    Individual tree and stand-level carbon and nutrient contents across one rotation of loblolly pine plantations on a reclaimed surface mine

    Get PDF
    While reclaimed loblolly pine (Pinus taeda L.) plantations in east Texas, USA have demonstrated similar aboveground productivity levels relative to unmined forests, there is interest in assessing carbon (C) and nutrients in aboveground components of reclaimed trees. Numerous studies have previously documented aboveground biomass, C, and nutrient contents in loblolly pine plantations; however, similar data have not been collected on mined lands. We investigated C, N, P, K, Ca, and Mg aboveground contents for first-rotation loblolly pine growing on reclaimed mined lands in the Gulf Coastal Plain over a 32-year chronosequence and correlated elemental rates to stand age, stem growth, and similar data for unmined lands. At the individual tree level, we evaluated elemental contents in aboveground biomass components using tree size, age, and site index as predictor variables. At the stand-level, we then scaled individual tree C and nutrients and fit a model to determine the sensitivity of aboveground elemental contents to stand age and site index. Our data suggest that aboveground C and nutrients in loblolly pine on mined lands exceed or follow similar trends to data for unmined pine plantations derived from the literature. Diameter and height were the best predictors of individual tree stem C and nutrient contents (R ≥ 0.9473 and 0.9280, respectively) followed by stand age (R ≥ 0.8660). Foliage produced weaker relationships across all predictor variables compared to stem, though still significant (P ≤ 0.05). The model for estimating stand-level C and nutrients using stand age provided a good fit, indicating that contents aggrade over time predictably. Results of this study show successful modelling of reclaimed loblolly pine aboveground C and nutrients, and suggest elemental cycling is comparable to unmined lands, thus providing applicability of our model to related systems

    Influence of soil type and natural Zn chelates on flax response, tensile properties and soil Zn availability

    Full text link
    A greenhouse experiment was conducted on weakly acidic and calcareous soils to evaluate the relative efficiencies of three natural Zn chelates [Zn-aminelignosulphonate (Zn-AML), Zn-polyhydroxyphenylcarboxylate (Zn-PHP) and Zn-S,S-ethylenediaminedisuccinate (Zn-S,S-EDDS)] applied to a crop textile flax (Linum ussitatisimum L.) at application rates of 0, 5 and 10 mg Zn kg−1. In the flax plant, the following parameters were determined: dry matter yield, soluble and total Zn concentrations in leaf and stem, chlorophyll, crude fibre, and tensile properties. For the different soil samples, the following parameters were determined: available Zn (DTPA-AB and Mehlich-3 extractable Zn), easily leachable Zn (BaCl2-extractable Zn), the distribution of Zn fractions, pH and redox potential. On the basis of the use of added Zn by flax, or Zn utilization, it would seem recommendable to apply Zn-S,S-EDDS at the low Zn rate in both soils. In contrast, adding the high Zn rate of this chelate to the weakly acidic soil produced an excessive Zn concentration in the plant, which caused a significant decrease in both dry matter yield and chlorophyll content. Furthermore, assessing available Zn with the DTPA-AB method proved the best way of estimating the level of excess Zn in flax plants. The soluble Zn concentration, which was established with 2-(N-morpholino)ethanesulfonic acid reagent (MES), of plant fresh and dry matter could be used as an alternative way of diagnosing the nutritional status of Zn in flax plants. In this experiment, the highest soil pHs were associated with the lowest redox potentials, which coincided with the smallest amounts of available Zn and water soluble Zn in soil, and the lowest levels of Zn uptake by flax plants
    corecore