945 research outputs found
Dynamical properties of Au from tight-binding molecular-dynamics simulations
We studied the dynamical properties of Au using our previously developed
tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K
were determined by computing the dynamical-matrix using a supercell approach.
In addition, we performed molecular-dynamics simulations at various
temperatures to obtain the temperature dependence of the lattice constant and
of the atomic mean-square-displacement, as well as the phonon density-of-states
and phonon-dispersion curves at finite temperature. We further tested the
transferability of the model to different atomic environments by simulating
liquid gold. Whenever possible we compared these results to experimental
values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical
Review
Effects of deposition dynamics on epitaxial growth
The dynamic effects, such as the steering and the screening effects during
deposition, on an epitaxial growth (Cu/Cu(001)), is studied by kinetic Monte
Carlo simulation that incorporates molecular dynamic simulation to rigorously
take the interaction of the deposited atom with the substrate atoms into
account.
We find three characteristic features of the surface morphology developed by
grazing angle deposition:
(1) enhanced surface roughness, (2) asymmetric mound, and (3) asymmetric
slopes of mound sides.
Regarding their dependence on both deposition angle and substrate
temperature, a reasonable agreement of the simulated results with the previous
experimental ones is found.
The characteristic growth features by grazing angle deposition are mainly
caused by the inhomogeneous deposition flux due to the steering and screening
effects, where the steering effects play the major role rather than the
screening effects.
Newly observed in the present simulation is that the side of mound in each
direction is composed of various facets instead of all being in one selected
mound angle even if the slope selection is attained, and that the slope
selection does not necessarily mean the facet selection.Comment: 9 pages, 10 figure
Stacking-fault energies for Ag, Cu, and Ni from empirical tight-binding potentials
The intrinsic stacking-fault energies and free energies for Ag, Cu, and Ni
are derived from molecular-dynamics simulations using the empirical
tight-binding potentials of Cleri and Rosato [Phys. Rev. B 48, 22 (1993)].
While the results show significant deviations from experimental data, the
general trend between the elements remains correct. This allows to use the
potentials for qualitative comparisons between metals with high and low
stacking-fault energies. Moreover, the effect of stacking faults on the local
vibrational properties near the fault is examined. It turns out that the
stacking fault has the strongest effect on modes in the center of the
transverse peak and its effect is localized in a region of approximately eight
monolayers around the defect.Comment: 5 pages, 2 figures, accepted for publication in Phys. Rev.
An Empirical Charge Transfer Potential with Correct Dissociation Limits
The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has
always embodied charge transfer processes. The mechanism of that behavior is
examined here and recast for use as a new empirical potential energy surface
for large-scale simulations. A two-state model is explored. The main features
of the model are: (1) Explicit decomposition of the total system electron
density is invoked; (2) The charge is defined through the density decomposition
into constituent contributions; (3) The charge transfer behavior is controlled
through the resonance energy matrix elements which cannot be ignored; and (4) A
reference-state approach, similar in spirit to the EVB method, is used to
define the resonance state energy contributions in terms of "knowable"
quantities. With equal validity, the new potential energy can be expressed as a
nonthermal ensemble average with a nonlinear but analytical charge dependence
in the occupation number. Dissociation to neutral species for a gas-phase
process is preserved. A variant of constrained search density functional theory
is advocated as the preferred way to define an energy for a given charge.Comment: Submitted to J. Chem. Phys. 11/12/03. 14 pages, 8 figure
Pressure Dependence of the Elastic Moduli in Aluminum Rich Al-Li Compounds
I have carried out numerical first principles calculations of the pressure
dependence of the elastic moduli for several ordered structures in the
Aluminum-Lithium system, specifically FCC Al, FCC and BCC Li, L1_2 Al_3Li, and
an ordered FCC Al_7Li supercell. The calculations were performed using the full
potential linear augmented plane wave method (LAPW) to calculate the total
energy as a function of strain, after which the data was fit to a polynomial
function of the strain to determine the modulus. A procedure for estimating the
errors in this process is also given. The predicted equilibrium lattice
parameters are slightly smaller than found experimentally, consistent with
other LDA calculations. The computed elastic moduli are within approximately
10% of the experimentally measured moduli, provided the calculations are
carried out at the experimental lattice constant. The LDA equilibrium shear
modulus C11-C12 increases from 59.3 GPa in Al, to 76.0 GPa in Al_7Li, to 106.2
GPa in Al_3Li. The modulus C_44 increases from 38.4 GPa in Al to 46.1 GPa in
Al_7Li, then falls to 40.7 GPa in Al_3Li. All of the calculated elastic moduli
increase with pressure with the exception of BCC Li, which becomes elastically
unstable at about 2 GPa, where C_11-C_12 vanishes.Comment: 17 pages (REVTEX) + 7 postscript figure
Rapid decomposition of traditionally produced biochar in an Oxisol under savannah in Northeastern Brazil.
Soil amendment with biochar has been claimed as an option for carbon (C) sequestration in agricultural soils. Most studies on biochar/soil organic carbon (SOC) interactions were executed under laboratory conditions. Here we tested the stability of biochar produced in a traditional kiln and its effects on the stocks of native SOC under field conditions
- …