316 research outputs found

    Entropic force approach in a noncommutative charged black hole and the equivalence principle

    Full text link
    Recently, Verlinde has suggested a novel model of duality between thermodynamics and gravity which leads to an emergent phenomenon for the origin of gravity and general relativity. In this paper, we investigate some features of this model in the presence of noncommutative charged black hole by performing the method of coordinate coherent states representing smeared structures. We derive several quantities, e.g. temperature, energy and entropic force. Our approach clearly exhibits that the entropic force on a smallest fundamental cell of holographic surface with radius r0r_0 is halted. Accordingly, we can conclude that the black hole remnants are absolutely inert without gravitational interactions. So, the equivalence principle of general relativity is contravened due to the fact that it is now possible to find a difference between the gravitational and inertial mass. In other words, the gravitational mass in the remnant size does not emit any gravitational field, therefore it is experienced to be zero, contrary to the inertial mass. This phenomenon illustrates a good example for a feasible experimental confirmation to the entropic picture of Newton's Second law in very short distances.Comment: 11 pages, 2 figure

    Key Parameters That Determine the Magnitude of the Decrease in Current in Nanopore Blockade Sensors

    Full text link
    Nanopore blockade sensors were developed to address the challenges of sensitivity and selectivity for conventional nanopore sensors. To date, the parameters affecting the current of the sensor have not been elucidated. Herein, the impacts of nanopore size and charge and the shape, size, surface charge, and aggregation state of magnetic nanoparticles were assessed. The sensor was tolerant to all parameters contrary to predictions from electronic or geometric arguments on the current change. Theoretical models showed the greater importance of the polymers around nanoparticles and the access resistance of nanopores to the current, when compared with translocation-based nanopore sensors. The signal magnitude was dominated by the change in access resistance of ∼4.25 Mω for all parameters, resulting in a robust system. The findings provide understandings of changes in current when nanopores are blocked, like in RNA trapping or nanopore blockade sensors, and are important for designing sensors based on nanopore blockades

    Tunneling of massive and charged particles from noncommutative Reissner-Nordstr\"{o}m black hole

    Full text link
    Massive charged and uncharged particles tunneling from commutative Reissner-Nordstrom black hole horizon has been studied with details in literature. Here, by adopting the coherent state picture of spacetime noncommutativity, we study tunneling of massive and charged particles from a noncommutative inspired Reissner-Nordstrom black hole horizon. We show that Hawking radiation in this case is not purely thermal and there are correlations between emitted modes. These correlations may provide a solution to the information loss problem. We also study thermodynamics of noncommutative horizon in this setup.Comment: 10 pages, 2 figure

    Entropic force approach to noncommutative Schwarzschild black holes signals a failure of current physical ideas

    Full text link
    Recently, a new perspective of gravitational-thermodynamic duality as an entropic force arising from alterations in the information connected to the positions of material bodies is found. In this paper, we generalize some aspects of this model in the presence of noncommutative Schwarzschild black hole by applying the method of coordinate coherent states describing smeared structures. We implement two different distributions: (a) Gaussian and (b) Lorentzian. Both mass distributions prepare the similar quantitative aspects for the entropic force. Our study shows, the entropic force on the smallest fundamental unit of a holographic screen with radius r0r_0 vanishes. As a result, black hole remnants are unconditionally inert even gravitational interactions do not exist therein. So, a distinction between gravitational and inertial mass in the size of black hole remnant is observed, i.e. the failure of the principle of equivalence. In addition, if one considers the screen radius to be less than the radius of the smallest holographic surface at the Planckian regime, then one encounters some unusual dynamical features leading to gravitational repulsive force and negative energy. On the other hand, the significant distinction between the two distributions is conceived to occur around r0r_0, and that is worth of mentioning: at this regime either our analysis is not the proper one, or non-extensive statistics should be employed.Comment: 15 pages, 2 figures, new references added, minor revision, Title changed, to appear in EPJ Plu

    Transient obscuration event captured in NGC 3227 IV. Origin of the obscuring cloud variability

    Get PDF
    Obscuration events in type I active galactic nuclei (AGN) have been detected more frequently in recent years. The strong flux decrease in the soft X-ray band between observations has been caused by clouds with large column densities transiting our line-of-sight (LOS) and covering the central AGN. Another event has been captured in NGC 3227 at the end of 2019. We aim to determine the nature of the observed spectral variability in 2019 obscuration event. We split the two XMM-Newton observations from 2019 into timing bins of length ∼\sim 10 ks. We used the SPEX code to analyse the 0.35-10 keV EPIC-PN spectra of each timing bin. In the first observation (Obs 1), there is a strong anti-correlation between the column density (NHN_H) of the obscurer and the continuum normalisations of the X-ray power-law and soft Comptonisation components (NpowN_{pow} and NcomtN_{comt}, respectively). The powerlaw continuum models the hard X-rays produced by the corona, and the Comptonisation component models the soft X-ray excess and emission from the accretion disk. Through further testing we conclude that the continuum is likely to drive the observed variability, but we cannot rule out a possible contribution from NH of the obscurer if it fully transverses across the ionising source within our LOS during the observation. The ionisation parameter (ξ\xi) of the obscurer is not easily constrained, and therefore it is not clear whether it varies in response to changes in ionising continuum. The second observation (Obs 2) displays a significantly lower count rate due to the combination of a high NH and covering fraction of the obscurer, and a lower continuum flux. The observed variability seen during the obscuration event of NGC 3227 in 2019 is likely driven by the continuum, but the obscurer varies at the same time, making it difficult to distinguish between the two possibilities with full certainty.Comment: 19 pages, 15 figure

    A weak group inverse for rectangular matrices

    Full text link
    [EN] In this paper, we extend the notion of weak group inverse to rectangular matrices (called WweightedWGinverse) by using the weighted core EP inverse recently investigated. This new generalized inverse also generalizes the well-known weighted group inverse given by Cline and Greville. In addition, we give several representations of the W-weighted WG inverse, and derive some characterizations and properties.First author was partially supported by UNRC (Grant PPI 18/C472) and CONICET (Grant PIP 112-201501-00433CO). Third author was partially supported by Ministerio de Economia, Industria y Competitividad of Spain (Grants DGI MTM2013-43678-P and Red de Excelencia MTM2017-90682-REDT).Ferreyra, DE.; Orquera, V.; Thome, N. (2019). A weak group inverse for rectangular matrices. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3727-3740. https://doi.org/10.1007/s13398-019-00674-9S372737401134Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58, 681–697 (2010)Baksalary, O.M., Trenkler, G.: On a generalized core inverse. Appl. Math. Comput. 236, 450–457 (2014)Bajodah, A.H.: Servo-constraint generalized inverse dynamics for robot manipulator control design. Int. J. Robot. Autom. 25, (2010). https://doi.org/10.2316/Journal.206.2016.1.206-3291Campbell, S.L., Meyer Jr., C.D.: Generalized Inverses of Linear transformations. SIAM, Philadelphia (2009)Cline, R.E., Greville, T.N.E.: A Drazin inverse for rectangular matrices. Linear Algebra Appl. 29, 53–62 (1980)Dajić, A., Koliha, J.J.: The weighted g-Drazin inverse for operators. J. Aust. Math. Soc. 2, 163–181 (2007)Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Rob. Res. 12, 1–19 (1993)Drazin, M.P.: Pseudo-inverses in associate rings and semirings. Am. Math. Mon. 65, 506–514 (1958)Ferreyra, D.E., Levis, F.E., Thome, N.: Revisiting of the core EP inverse and its extension to rectangular matrices. Quaest. Math. 41, 265–281 (2018)Ferreyra, D.E., Levis, F.E., Thome, N.: Maximal classes of matrices determining generalized inverses. Appl. Math. Comput. 333, 42–52 (2018)Gigola, S., Lebtahi, L., Thome, N.: The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem. J. Comput. Appl. Math. 291, 449–457 (2016)Hartwig, R.E.: The weighted ∗* ∗ -core-nilpotent decomposition. Linear Algebra Appl. 211, 101–111 (1994)Kirkland, S.J., Neumann, M.: Group inverses of M-matrices and their applications. Chapman and Hall/CRC, London (2013)Malik, S., Thome, N.: On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226, 575–580 (2014)Male sˇ{{\check{\rm s}}} s ˇ ević, B., Obradović, R., Banjac, B., Jovović, I., Makragić, M.: Application of polynomial texture mapping in process of digitalization of cultural heritage. arXiv:1312.6935 (2013). Accessed 14 June 2018Manjunatha Prasad, K., Mohana, K.S.: Core EP inverse. Linear Multilinear Algebra 62, 792–802 (2014)Mehdipour, M., Salemi, A.: On a new generalized inverse of matrices. Linear Multilinear Algebra 66, 1046–1053 (2018)Meng, L.S.: The DMP inverse for rectangular matrices. Filomat 31, 6015–6019 (2017)Mosić, D.: The CMP inverse for rectangular matrices. Aequaetiones Math. 92, 649–659 (2018)Penrose, R.: A generalized inverse for matrices. Proc. Cambrid. Philos. Soc. 51, 406–413 (1955)Soleimani, F., Stanimirović, P.S., Soleymani, F.: Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms 8, 982–998 (2015)Xiao, G.Z., Shen, B.Z., Wu, C.K., Wong, C.S.: Some spectral techniques in coding theory. Discrete Math. 87, 181–186 (1991)Wang, H.: Core-EP decomposition and its applications. Linear Algebra Appl. 508, 289–300 (2016)Wang, H., Chen, J.: Weak group inverse. Open Math. 16, 1218–1232 (2018)Wei, Y.: A characterization for the WW W -weighted Drazin inverse and a Crammer rule for the WW W -weighted Drazin inverse solution. Appl. Math. Comput. 125, 303–310 (2002

    Transient obscuration event captured in NGC 3227. I. Continuum model for the broadband spectral energy distribution

    Get PDF
    © ESO 2021. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1051/0004-6361/202141324From Swift monitoring of a sample of active galactic nuclei (AGN) we found a transient X-ray obscuration event in Seyfert-1 galaxy NGC 3227, and thus triggered our joint XMM-Newton, NuSTAR, and Hubble Space Telescope (HST) observations to study this event. Here in the first paper of our series we present the broadband continuum modelling of the spectral energy distribution (SED) for NGC 3227, extending from near infrared (NIR) to hard X-rays. We use our new spectra taken with XMM-Newton, NuSTAR, and HST/COS in 2019, together with archival unobscured XMM-Newton, NuSTAR, and HST/STIS data, in order to disentangle various spectral components of NGC 3227 and recover the underlying continuum. We find the observed NIR-optical-UV continuum is explained well by an accretion disk blackbody component (Tmax = 10 eV), which is internally reddened by E(B-V) = 0.45 with a Small Magellanic Cloud (SMC) extinction law. We derive the inner radius (12 Rg) and the accretion rate (0.1 solar mass per year) of the disk by modelling the thermal disk emission. The internal reddening in NGC 3227 is most likely associated with outflows from the dusty AGN torus. In addition, an unreddened continuum component is also evident, which likely arises from scattered radiation, associated with the extended narrow-line region (NLR) of NGC 3227. The extreme ultraviolet (EUV) continuum, and the 'soft X-ray excess', can be explained with a 'warm Comptonisation' component. The hard X-rays are consistent with a power-law and a neutral reflection component. The intrinsic bolometric luminosity of the AGN in NGC 3227 is about 2.2e+43 erg/s in 2019, corresponding to 3% Eddington luminosity. Our continuum modelling of the new triggered data of NGC 3227 requires the presence of a new obscuring gas with column density NH = 5e+22 cm^-2, partially covering the X-ray source (Cf = 0.6).Peer reviewe

    Parikh-Wilczek Tunneling from Noncommutative Higher Dimensional Black Holes

    Full text link
    We study tunneling of massless and massive particles through the smeared quantum horizon of the extra-dimensional Schwarzschild black holes. The emission rate of the particles' tunneling is modified by noncommutativity effects in a bulk spacetime of dimension dd. The issues of information loss and possible correlations between emitted particles are discussed. We show that even by considering both noncommutativity and braneworld effects, there is no correlation between different modes of evaporation at least at late-time and within approximations used in the calculations. However, incorporation of quantum gravity effects such as modification of the standard dispersion relation or generalization of the Heisenberg uncertainty principle, leads to the correlation between emitted particles. Although time-evolution of these correlations is not trivial, a part of information coming out of the black hole can be preserved in these correlations. On the other hand, as a well-known result of spacetime noncommutativity, a part of information may be preserved in a stable black hole remnant.Comment: 23 pages, 1 figure, Accepted for publication in JHE
    • …
    corecore