139 research outputs found

    Clinical evaluation of cases of lower genitourinary tract trauma with special reference to primary realignment in cases of posterior urethral distraction defect

    Get PDF
    Background: The exact management strategy for lower genitourinary tract trauma remains controversial. Primary realignment with/without suprapubic catheterization provides definitive procedure with low complications and avoids the need for further open surgeries.Methods: This was a prospective longitudinal study done on 31 cases with different complaints related to lower tract genitourinary trauma. All patients underwent suprapubic catheterization and/or primary realignment. The outcome was measured in the terms of time for discharge, urinary incontinence, stricture formation, erectile dysfunction and impotence.Results: Maximum proportion of patients with lower genitourinary injuries in the study was in 10-20 years age group (48.4%). Blunt trauma was accounted for 93.6% of lower genitourinary injuries. Road traffic accidents were the most common cause (90.32%) of lower genitourinary injuries. Urinary bladder injuries accounted for 41.9% of all lower genitourinary injuries. Blood at meatus is present in only about half of the significant urethral injuries. Primary realignment of urethral injury results in lesser duration of hospital stay (9.24±2.44 days), shorter length of suprapubic catheterization (11.67±4.78 days) and early spontaneous voiding (40.93±15.79 days). The stricture rate following primary realignment is low (31.25%). Erectile dysfunction was noted only in two patients (16.6%).Conclusions: Management of traumatic urethral disruption by primary realignment serves as ultimate therapy in majority of patients

    PRIMARY MALIGNANT MELANOMA UTERINE CERVIX

    Get PDF
    A 40-year-old premenopausal female presented with foul-smelling per vaginal discharge for 3 months. Diagnostic work revealed a locally advanced primary malignant melanoma of uterine cervix. The patient declined pelvic surgery and was treated with Dacarbazine. Malignant melanoma is a rare tumour of skin and has been ranked in the top ve cancers of Australia and Sweden. It is a tumour of melanocytes which forms melanin pigment in the skin. In men, the most common site is trunk while in females common site is limbs. However, melanoma can arise from mucosal surfaces where the melanocytes are present. Most common mucosal sites are head and neck followed by female genital tract. Key words: Cervix, dacarbazine, malignant melanoma

    Association between ethnicity and hypertension in Northern Colombia in 2015

    Get PDF
    Background Studies in the United States have shown a genetic predisposition to hypertension in individuals of African descent. However, studies on the associations between ethnic groups and hypertension in Latin America are lacking and the limited results have been inconsistent. The objective of this study is to determine whether Afro-Colombian ethnicity increases the risk of hypertension. Methods This study is a secondary data analysis of a cross sectional study from five provinces in Northern Colombia. Randomly selected individuals (N = 2613; age-range 18-74 years) enrolled in a health care insurance company underwent physical examinations and completed questionnaires regarding ethnicity, lifestyle, and other risk factors. Hypertension in these patients was determined. Unadjusted and adjusted logistic regression analysis were calculated to determine the association between ethnicity and hypertension. Results No association between Afro-Colombian ethnicity and hypertension was found (odds ratio [OR], 0.85; 95% confidence interval [CI], 0.66-1.09). As expected, people with a body mass index (BMI) of 30 or higher were at a greater risk of having hypertension (OR, 3.12; 95% CI, 2.35-4.16) compared with those with a normal BMI. Conclusions Findings from this study suggest no independent association between Afro-Colombian ethnicity and hypertension. Further research should focus on genotyping or socioeconomic factors such as income level.Peer reviewe

    Development of polymeric nanocomposite (Xyloglucan-co-Methacrylic acid/Hydroxyapatite/SiO 2 ) scaffold for bone tissue engineering applications—In-vitro antibacterial, cytotoxicity and cell culture evaluation

    Get PDF
    Advancement and innovation in bone regeneration, specifically polymeric composite scaffolds, are of high significance for the treatment of bone defects. Xyloglucan (XG) is a polysaccharide biopolymer having a wide variety of regenerative tissue therapeutic applications due to its biocompatibility, in-vitro degradation and cytocompatibility. Current research is focused on the fabrication of polymeric bioactive scaffolds by freeze drying method for nanocomposite materials. The nanocomposite materials have been synthesized from free radical polymerization using n-SiO2 and n-HAp XG and Methacrylic acid (MAAc). Functional group analysis, crystallinity and surface morphology were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) techniques, respectively. These bioactive polymeric scaffolds presented interconnected and well-organized porous morphology, controlled precisely by substantial ratios of n-SiO2. The swelling analysis was also performed in different media at varying temperatures (27, 37 and 47 °C) and the mechanical behavior of the dried scaffolds is also investigated. Antibacterial activities of these scaffolds were conducted against pathogenic gram-positive and gram-negative bacteria. Besides, the biological behavior of these scaffolds was evaluated by the Neutral Red dye assay against the MC3T3-E1 cell line. The scaffolds showed interesting properties for bone tissue engineering, including porosity with substantial mechanical strength, biodegradability, biocompatibility and cytocompatibility behavior. The reported polymeric bioactive scaffolds can be aspirant biomaterials for bone tissue engineering to regenerate defecated bone

    Synthesis and Characterization of Silver-Coated Polymeric Scaffolds for Bone Tissue Engineering: Antibacterial and In Vitro Evaluation of Cytotoxicity and Biocompatibility

    Get PDF
    In bone tissue engineering, multifunctional composite materials are very challenging. Bone tissue engineering is an innovative technique to develop biocompatible scaffolds with suitable orthopedic applications with enhanced antibacterial and mechanical properties. This research introduces a polymeric nanocomposite scaffold based on arabinoxylan-co-acrylic acid, nano-hydroxyapatite (nHAp), nano-aluminum oxide (nAl₂O₃), and graphene oxide (GO) by free-radical polymerization for the development of porous scaffolds using the freeze-drying technique. These polymeric nanocomposite scaffolds were coated with silver (Ag) nanoparticles to improve antibacterial activities. Together, nHAp, nAl₂O₃, and GO enhance the multifunctional properties of materials, which regulate their physicochemical and biomechanical properties. Results revealed that the Ag-coated polymeric nanocomposite scaffolds had excellent antibacterial properties and better microstructural properties. Regulated morphological properties and maximal antibacterial inhibition zones were found in the porous scaffolds with the increasing amount of GO. Moreover, the nanosystem and the polymeric matrix have improved the compressive strength (18.89 MPa) and Young’s modulus (198.61 MPa) of scaffolds upon increasing the amount of GO. The biological activities of the scaffolds were investigated against the mouse preosteoblast cell lines (MC3T3-E1) and increasing the quantities of GO helps cell adherence and proliferation. Therefore, our findings showed that these silver-coated polymeric nanocomposite scaffolds have the potential for engineering bone tissue

    Structure and ligand binding in the putative anti-microbial peptide transporter protein, YejA

    Get PDF
    YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of Escherichia coli to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry. In the structure, the peptide interactions with the protein are mediated by main chain hydrogen bonds with the exception of Arg5 whose guanidinium side chain makes a set of defining polar interactions with four YejA residues. More detailed characterization of purified recombinant YejA, by a combination of ESI and MALDI-mass spectrometry as well as thermal shift assays, reveals a set of YejA complexes containing overlapping peptides 10-19 residues in length. All contain the sequence LGEPRYAFN. Curiously, these peptides correspond to residues 8-26 of the mature YejA protein, which belong to a unique N-terminal extension that distinguishes YejA from other cluster C oligopeptide binding proteins of known structure. This 35-residue extension is well-ordered and packs across the surface of the protein. The undecapeptide ligand occupies only a fraction of the enclosed pocket volume suggesting the possibility that much larger peptides or peptide conjugates could be accommodated, though thermal shift assays of YejA binding to antimicrobial peptides and peptides unrelated to LGEPRYAFNFN have not provided evidence of binding. While the physiological significance of this 'auto-binding' is not clear, the experimental data suggest that it is not an artefact of the crystallization process and that it may have a function in the sensing of periplasmic or membrane stress

    ‘We need to share our stories’: the lives of Pakistanis with intellectual disability and their guardians

    Get PDF
    © 2020 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd Introduction: The experiences of Pakistanis with intellectual disabilities (IDs) and their family members have been underexplored empirically. Method: The present study sought to address this gap by understanding the lives of five Special Olympics Pakistan athletes and their guardians through PhotoVoice. Findings: Through thematic analysis, we present the primary theme concerning Pakistan\u27s cultural context that provides an empirical exploration of cultural beliefs about intellectual disability, cultural expectations and support received by people with intellectual disabilities and their guardians. Discussion: We discuss implications for research and practice

    (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    Get PDF
    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO2. The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts

    Synchronization of Boron application methods and rates is environmentally friendly approach to improve quality attributes of Mangifera indica L. on sustainable basis

    Get PDF
    Micronutrient deficiency in the soil is one of the major causes of mango fruit and yield's poor quality. Besides, the consumption of such a diet also causes a deficiency of micronutrients in humans. Boron deficiency adversely affects the flowering and pollen tube formation, thus decreasing mango yield and quality attributes. Soil and foliar application of B are considered a productive method to alleviate boron deficiency. A field experiment was conducted to explore the Boron most suitable method and application rate in mango under the current climatic scenario. There were nine treatments applied in three replications. The results showed that application of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) significantly enhanced the nitrogen, potassium, proteins, ash, fats, fiber, and total soluble solids in mango as compared to the control. A significant decrease in sodium, total phenolics contents, antioxidant activity, and acidity as citric acid also validated the effective functioning of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) as compared to control. In conclusion, T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) is a potent strategy to improve the quality attributes of mango under the changing climatic situation
    corecore