11 research outputs found

    Signal transduction mechanism of interleukin 6 in cultured rat mesangial cells

    Get PDF
    AbstractInterleukin 6 (IL-6) is one of the potent autocrine growth factors for mesangial cells. We investigated the signal transduction mechanism or IL-6 in cultured rat mesangial cells. IL-6 induced a transient increase of inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) followed by a transient and sustained increase of intracellular calcium concentration, suggesting that IL-6 stimulates phosphoinositide turnover. IL-6 also stimulated prostaglandin E2 (PGE2) production. The IL-6-concentration dependency in PGE2 production was similar to that in Ins 1,4,5-P3 production. We concluded that the action of IL-6 on mesangial cells is exerted at least partially through the enhancement of phosphoinositide turnover and PGE2 production

    Origin of carbon and essential fatty acids in higher trophic level fish in headwater stream food webs

    Get PDF
    Dietary carbon sources in headwater stream food webs are divided into allochthonous and autochthonous organic matters. We hypothesized that: 1) the dietary allochthonous contribution for fish in headwater stream food webs positively relate with canopy cover; and 2) essential fatty acids originate from autochthonous organic matter regardless of canopy covers, because essential fatty acids, such as 20:5ω3 and 22:6ω3, are normally absent in allochthonous organic matters. We investigated predatory fish Salvelinus leucomaenis stomach contents in four headwater stream systems, which are located in subarctic region in northern Japan. In addition, stable carbon and nitrogen isotope ratios, fatty acid profile, and stable carbon isotope ratios of essential fatty acids were analyzed. Bulk stable carbon analysis showed the major contribution of autochthonous sources to assimilated carbon in S. leucomaenis. Surface baits in the stomach had intermediate stable carbon isotope ratios between autochthonous and allochthonous organic matter, indicating aquatic carbon was partly assimilated by surface baits. Stable carbon isotope ratios of essential fatty acids showed a positive relationship between autochthonous sources and S. leucomaenis across four study sites. This study demonstrated that the main supplier of dietary carbon and essential fatty acids was autochthonous organic matter even in headwater stream ecosystems under high canopy cover

    Volcanic temperature changes modulated volatile release and climate fluctuations at the end-Triassic mass extinction

    No full text
    Emplacement of the Central Atlantic Magmatic Province (CAMP) is thought to have triggered global environmental changes and the end-Triassic mass extinction (ETE). However, the mechanisms linking volcanism and environmental change are unclear. Here we provide new insight into these linkages by measuring the abundance of both sedimentary five- to six-ring polycyclic aromatic hydrocarbons (PAHs) and mercury from strata deposited in shallow marine environments across the ETE at the GSSP Kuhjoch section in Austria and St. Audrie's Bay section in the UK. To contextualize these data, we report results from laboratory experiments measuring the production of SO2 and CO2 during heating of limestone and mudstone. ETE sediments record parallel enrichments of mercury and five- to six-ring PAHs, which could have been produced by intrusive magma (mainly sills) and lava flows during the early stage of the CAMP emplacement; these data indicate a direct link between massive gas emission from sill contact metamorphism and the ETE. The fraction of coronene – a highly condensed six-ring PAH that requires greater energy to form compared to smaller PAHs – accumulated in the sediments during these initial volcanic events is low, and it coincides with the terrestrial plant turnover and initial marine extinction. Coronene increases to medium values coinciding with the final marine extinction level. Our heating experiments of typical carbonate and mudstone materials show that relatively low temperature heating (>350 °C) by sills releases massive amounts of SO2 on a 100 yr time scale, whereas higher temperature heating (500–600 °C) forms more CO2 on the same time scale. The combination of our end-Triassic geochemical data and laboratory results implies that low heating by sills caused SO2-dominated gas emission to the stratosphere and low CO2 emission, inducing global cooling that could have precipitated the mass extinction. The subsequent increase in coronene content indicates higher volcanic temperature that would have volatilized CO2 rich gas; the consequence was a switch to greater CO2 release and long-term (>105 yr) global warming

    Blue light irradiation increases the relative abundance of the diatom Nitzschia palea in co-culture with cyanobacterium Microcystis aeruginosa

    No full text
    Lake eutrophication is associated with cyanobacterial blooms. The pennate diatom Nitzschia palea (N. palea) inhibits the growth of the cyanobacterium Microcystis aeruginosa (M. aeruginosa); therefore, increasing the relative abundance of N. palea may contribute to the inhibition of Microcystis blooms. Several studies have demonstrated that blue light irradiation promotes diatom growth and inhibits cyanobacterial growth. In this study, we evaluated the effects of blue light irradiation on N. palea and M. aeruginosa abundance. Monocultures and co-cultures of N. palea and M. aeruginosa were exposed to blue light and fluorescent light at 32 μmol photons m^-2 s^-1. The relative abundance of N. palea under fluorescent light decreased gradually, whereas the abundance under blue light was relatively higher (approximately 74% and 98% under fluorescent light and blue light, respectively, at the end of the experiment). The inhibition efficiency of blue light on the growth rate of M. aeruginosa was related to the light intensity. The optimal light intensity was considered 20 μmol photons m^-2 s^-1 based on the inhibition efficiency of 100%. Blue light irradiation can be used to increase the abundance of N. palea to control Microcystis blooms

    Integrating isotopic, microbial, and modeling approaches to understand methane dynamics in a frequently disturbed deep reservoir in Taiwan

    Get PDF
    It has been estimated that more than 48% of global methane emissions from lakes and reservoirs occur at low latitudes (<24°). To improve this estimate, knowledge regarding underexplored ecosystems, particularly deep lakes and reservoirs in Asian monsoon regions, is needed because the magnitude of methane emissions is influenced by lake bathymetry and climatic conditions. We conducted long-term studies beginning in 2004 at Feitsui Reservoir (FTR) in Taiwan, a subtropical monomictic system with a maximum depth of 120 m to monitor seasonal and interannual variations of three key characteristics and to understand the mechanisms underlying these variations. Key characteristics investigated were as follows: (1) the balance of primary production and heterotrophic respiration as a determinant of vertical oxygen distribution, (2) methane production at the bottom of the reservoir, oxidation in the water column, and emissions from the lake surface, and (3) the contribution of methane-originated carbon to the pelagic food web through methane-oxidizing bacteria (MOB). This review highlights major achievements from FTR studies integrating isotopic, microbial, and modeling approaches. Based on our findings, we proposed two conceptual models: (1) a model of methane dynamics, which addresses the differences in methane emission mechanisms between deep and shallow lakes, and (2) a spatially explicit model linking benthic methane production to the pelagic food web, which addresses the diversity of MOB metabolisms and their dependence on oxygen availability. Finally, we address why long-term studies of subtropical lakes and reservoirs are important for better understanding the effects of climate on low- to mid-latitude ecosystems
    corecore